
SZ Sequences: Binary-Constructed (0, 2𝑞)-Sequences
ABDALLA G. M. AHMED, CSSE, Shenzhen University, China

MATT PHARR, NVIDIA, USA

VICTOR OSTROMOUKHOV, Univ Lyon 1, CNRS, INSA Lyon, France

HUI HUANG
∗
, CSSE, Shenzhen University, China

(a) Sobol (b) SZ (c) Sobol (d) SZ

Fig. 1. (a) Visualization of all pairwise projections of the first 16 dimensions of the Sobol sequence. The binary Sobol generator matrices appear along the

diagonal. Each square below shows the first 256 points of the 2D projection using the corresponding pair of matrices in its row and column. Above the matrices

are the power spectra of these projections, in diagonally mirrored positions, averaged over one million Owen-scrambled realizations. (b) The corresponding

visualization for our SZ sequence. SZ points are well distributed across all 2D projections; here, all sets of 256 points satisfy 16×16 stratification, unlike Sobol
points, and their power spectra are more regular and smoother at higher frequencies. Furthermore, unlike Sobol, where only the first two dimensions form a

(0, 2)-sequence (red background), each successive pair of SZ matrices yields a (0, 2)-sequence. Moreover, each consecutive set of four SZ matrices generates

4D points that are (0, 4)-sequences (cyan background), which means they also exhibit all combinations of 4×64 stratifications in 2D, all combinations of

4×4×16 stratifications for all four 3D triplets, as illustrated in the exploded cube for the first three dimensions, and then there is a full 4×4×4×4 stratification
in 4D. Finally, all 16 SZ matrices together form a (0, 16)-sequence in base 16. (c, d) These properties yield superior results in common rendering applications.

The insets on the left, rendered using Sobol points, show Sobol’s characteristic unconverged checkerboard pattern, while the insets on the right, rendered using

SZ points, avoid this artifact and exhibit lower numerical error, achieving a 1.93× lower mean relative squared error for this scene at 64 samples per pixel.

Low-discrepancy sequences have seen widespread adoption in computer
graphics thanks to the superior rates of convergence that they provide. Be-
cause rendering integrals often are comprised of products of lower-dimensional
integrals, recent work has focused on developing sequences that are also
well-distributed in lower-dimensional projections. To this end, we introduce
a novel construction of binary-based (0, 4)-sequences; that is, progressive
∗Corresponding author: Hui Huang

Authors’ addresses: Abdalla G. M. Ahmed, CSSE, Shenzhen University, China, abdalla_
gafar@hotmail.com; Matt Pharr, NVIDIA, USA, matt@pharr.org; Victor Ostromoukhov,
Univ Lyon 1, CNRS, INSA Lyon, France, victor.ostromoukhov@liris.cnrs.fr; Hui Huang,
CSSE, Shenzhen University, China, hhzhiyan@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 0730-0301/2025/12-ART206
https://doi.org/10.1145/3763272

fully multi-stratified sequences of 4D points, and extend the idea to higher
power-of-two dimensions. We further show that not only it is possible to
nest lower-dimensional sequences in higher-dimensional ones—for example,
embedding a (0, 2)-sequence within our (0, 4)-sequence—but that we can
ensemble two (0, 2)-sequences into a (0, 4)-sequence, four (0, 4)-sequences
into a (0, 16)-sequence, and so on. Such sequences can provide excellent
rates of convergence when integrals include lower-dimensional integration
problems in 2, 4, 16,. . . dimensions. Our construction is based on using
2×2 block matrices as symbols to construct larger matrices that potentially
generate a sequence with the target (0, 𝑠)-sequence in base 𝑠 property. We
describe how to search for suitable alphabets and identify two distinct, cross-
related alphabets of block symbols, which we call 𝑠 and 𝑧, hence SZ for the
resulting family of sequences. Given the alphabets, we construct candidate
generator matrices and search for valid sets of matrices. We then infer a sim-
ple recurrence formula to construct full-resolution (64-bit) matrices. Because
our generator matrices are binary, they allow highly-efficient implemen-
tation using bitwise operations and can be used as a drop-in replacement
for Sobol matrices in existing applications. We compare SZ sequences to
state-of-the-art low discrepancy sequences, and demonstrate mean relative
squared error improvements up to 1.93× in common rendering applications.

ACM Trans. Graph., Vol. 44, No. 6, Article 206. Publication date: December 2025.

HTTPS://ORCID.ORG/0000-0002-2348-6897
HTTPS://ORCID.ORG/0000-0002-0566-8291
HTTPS://ORCID.ORG/0009-0004-3123-9388
HTTPS://ORCID.ORG/0000-0003-3212-0544
https://orcid.org/0000-0002-2348-6897
https://orcid.org/0000-0002-0566-8291
https://orcid.org/0009-0004-3123-9388
https://orcid.org/0000-0003-3212-0544
https://doi.org/10.1145/3763272

206:2 • Abdalla G. M. Ahmed, Matt Pharr, Victor Ostromoukhov, and Hui Huang

CCS Concepts: • Mathematics of computing→ Quadrature; • Comput-
ing methodologies→ Rendering.

Additional Key Words and Phrases: Quasi-Monte Carlo Integration, Low
Discrepancy Sequences, Sobol Sequences, Rendering

ACM Reference Format:
Abdalla G. M. Ahmed, Matt Pharr, Victor Ostromoukhov, and Hui Huang.
2025. SZ Sequences: Binary-Constructed (0, 2𝑞)-Sequences. ACM Trans.
Graph. 44, 6, Article 206 (December 2025), 14 pages. https://doi.org/10.1145/
3763272

1 INTRODUCTION

Sampling is a fundamental process in computer graphics (CG), un-
derlying many areas such as halftoning and stippling, geometry
processing, machine learning, and—most notably—rendering, where
pixels are computed through Monte Carlo integration of complex
light-transport paths. Although these paths are inherently high-
dimensional, they are mostly composed of 2D surface interactions,
along with some 1D constituents, which led to the idea of construct-
ing high-dimensional samples analogously by pairing 2D and 1D
samples over these constituents [Cook et al. 1984; Glassner 1994].
Research therefore focused on optimizing 2D distributions, and it
was long believed that optimizing over the high-dimensional space
was “at best a secondary concern” [Pharr and Humphreys 2004].
Even when the inherently high-dimensional low-discrepancy (LD)
sequences were introduced to CG, typically only the first two di-
mensions were used and similarly combined, “padded”, to build
high-dimensional samples [Kollig and Keller 2002].
While LD sequences could be used to sample the image plane

directly [Mitchell 1992], doing so with parallel rendering based
on screen-space decomposition was challenging since consecutive
samples from the sequence end up at far-away pixels. A milestone
came with Grünschloß et. al. [2012] showing how to invert LD
sequences, making it possible to determine which sample in the
sequence corresponds to a given sample index in a pixel. This in-
version greatly facilitated global LD sampling, where a single high-
dimensional LD sequence is used to generate all samples for all
pixels in all dimensions. Despite noticeable artifacts before con-
vergence, the undeniably superior performance of this sampling
strategy clearly indicated that high-dimensional uniformity does
indeed matter. It is worth noting that the employed Sobol sequences
had already been optimized for improved 2D projections by Joe
and Kuo [2008]; thus, this success actually reflects a combination
of two- and high-dimensional uniformity. Soon after, pbrt and Mit-
suba—two widely used research rendering engines—both adopted
global Sobol sampling as their default, and subsequent sampling re-
search in CG largely focused on LD constructions, with the primary
goal of exerting greater control over these distributions, especially
their lower-dimensional projections.

In this paper, wemake a major advancement in this research direc-
tion of controlling LD distributions. Rather than adapting one of the
few known sequences, we present a novel construction of a complete
family of LD sequences, built entirely from first principles. We use
binary matrices to construct (0, 4)-sequences in base 4, as defined in
Section 2. We then show how to extend this sequence to additional
dimensions, achieving (0, 2)-sequences in each pair of dimensions,

(0, 4)-sequences in each quartet, (0, 16)-sequences in each set of
16 dimensions, and so forth. Our sequences thus deliver superior
integration performance in many cases where lower-dimensional
projections are important. Because our generator matrices are bi-
nary, they can serve as a drop-in replacement for systems currently
using Sobol samples: no algorithmic changes are required, and com-
putational performance remains unaffected.

2 TECHNICAL BACKGROUND AND RELATED WORK

Our work belongs to the research area of uniform point distribu-
tion [Kuipers and Niederreiter 1974], which aims to produce point
distributions that uniformly cover a domain better than random
(white noise) distributions. The 𝑠-dimensional sampled domain is
usually scaled to the half-open unit hypercube (0, 1]𝑠 . In this section,
we furnish a basic technical background needed to understand our
proposed method, and briefly review the most closely related work.

2.1 Discrepancy

The term “discrepancy” refers to the error incurred when using a
point set to estimate the volume of a region by counting the propor-
tion of points falling inside. Star discrepancy, commonly denoted as
𝐷∗, is the maximum discrepancy over all axis-aligned hyperrectan-
gles in the domain and provides a reliable measure of a point set’s
performance in numerical integration. A point set is considered a
low-discrepancy (LD) set if it attains O

(
log𝑠−1 (𝑁)/𝑁

)
discrepancy

for 𝑁 points in 𝑠-dimensions. A low-discrepancy sequence is an
infinite sequence of points that yields an LD set for specific con-
tiguous blocks of points of certain sizes, and attains O (log𝑠 (𝑁)/𝑁)
discrepancy for all contiguous blocks.

2.2 Radix-Based Constructions

A significant one-dimensional LD sequence construction was intro-
duced by van der Corput [1935]. If

. . . 𝑣3𝑣2𝑣1 =
∑︁
𝑖=1

𝑣𝑖2𝑖−1 (1)

denotes the binary encoding of the sample index 𝑣 , then the 𝑣th
sample is computed by mirroring the bits of 𝑣 around the fractional
point:

𝑥𝑣 =
∑︁
𝑖=1

𝑣𝑖2−𝑖 , (2)

This approach can be generalized to higher dimensions by generat-
ing the 𝑘th component (dimension) of the sample through a distinct
linear mapping:

𝑋
(𝑘)
𝑣 = 𝐶 (𝑘)𝑉 , (3)

where 𝑉 is a vector representing the 𝑣th digit-reversed van-der-
Corput-like sample in some base 𝑏,𝑋 (𝑘)𝑣 is a vector representing the
same-base fractional digits of the final sample location along the 𝑘th
axis, and𝐶 (𝑘) is a matrix in Galois Field (GF)𝑏, known as a generator
matrix, that linearly maps the reversed digits of the sample index
to the digits of the computed sample—hence the term “digital” to
collectively describe these methods.We next briefly outline the three
most established digital construction approaches to LD sequences.

The first known higher-dimensional extension to van der Corput
sequences is due to Halton [1960], who simply used a different prime

ACM Trans. Graph., Vol. 44, No. 6, Article 206. Publication date: December 2025.

https://doi.org/10.1145/3763272
https://doi.org/10.1145/3763272

SZ Sequences: Binary-Constructed (0, 2𝑞)-Sequences • 206:3

base for encoding the index 𝑣 along each axis. Identity matrices may
be used for 𝐶 (𝑘) in Eq. (3), but more complex scrambling matrices
have been proposed to improve pairwise 2D projections.
A very different approach was taken by Sobol [1967], who re-

tained a binary-base encoding and constructed a distinct generator
matrix for each dimension, using a recurrence operation to compute
each column of the matrix from the preceding columns, with coeffi-
cients derived from a primitive polynomial. These polynomials, in a
sense, replace the role of different bases in Halton’s construction.
We skip the details and only highlight the most relevant one here
that the first two primitive polynomials lead to the pair

(𝐼 , 𝑃) = ©­«
,

ª®¬
(4)

that constitutes the first two, invariant, and most widely known
dimensions of Sobol’s construction, where

𝑃 =

(
𝑝𝑖, 𝑗 :

(
𝑗

𝑖

)
mod 2

)
(5)

happens to be the Pascal matrix in GF(2), with 𝑖 and 𝑗 denoting
row and column indices, respectively, indexed from 0. For better
visibility, we hereinafter adopt the convention of showing binary
matrices as arrays of (0) light and (1) dark dots, and also occasionally
use ‘.’ instead of ‘0’ for the same purpose.

These first two dimensions of Sobol inspired a third construction
by Faure [1982], which uses Pascal matrices

𝐶 (𝑘) =
(
𝑐
(𝑘)
𝑖, 𝑗 :

(
𝑗

𝑖

)
𝑘 𝑗−𝑖 mod 𝑏

)
, (6)

in GF(𝑏) with a prime base 𝑏, generating a 𝑏-dimensional LD se-
quence that is analogous to the 2D Sobol sequence in a sense ex-
plained in the following subsection. Niederreiter [1987] extended
Faure construction to power-of-prime bases 𝑏𝑞 using symbolic ma-
trices and arithmetic over GF(𝑏𝑞).

Thus, we identify three well-established construction approaches
for high-dimensional LD sequences:

(1) Halton, using different prime bases.
(2) Sobol and variants, using binary-polynomial-based matrices.
(3) Faure and Niederreiter’s extension, using Pascal matrices over

fields.
Among the three, two factors have made Sobol the most widely
adopted in computer graphics: (a) its binary base that leads to ex-
tremely fast computation, and (b) its superior distribution quality in
lower dimensions, as explained in the following subsection. Halton
follows, sharing the second but not the first of Sobol’s properties.
Because the prime bases are known at compile-time, the cost of
integer divisions and modulus operations can be reduced [Warren
2012], bringing the digit reversal of Halton within tolerable limits,
which led to Halton sequences being adopted in common rendering
platforms such as pbrt [Pharr et al. 2023].
In contrast, we are unaware of any mention of Faure sequences

and their derivatives in CG, which we attribute primarily to their
large bases across all dimensions, requiring a considerably greater
number of points to achieve the advertised uniformity. The lookup-
based arithmetic of Niederreiter’s extension [Bratley et al. 1992]

exacerbates this limitation by adding significant computational over-
head.
While our work is developed from first principles, the resulting

construction may be considered an extension of Faure’s—specifically
its Niederreiter extension—that addresses both limitations: we en-
semble higher-dimensional sequences from lower-dimensional ones
and use GF(2) matrices like Sobol’s. Thus, our construction effec-
tively introduces the third category of LD sequences to CG.

2.3 (𝑡,𝑚, 𝑠)-Nets and (𝑡, 𝑠)-Sequences
Niederreiter [1987] also established a complete theoretical frame-
work for developing and studying a large class of LD constructions,
including the radix-based methods listed above. At the heart of
this theory is so-called (𝑡,𝑚, 𝑠)-Nets in base 𝑏, which describe a
multi-stratified distribution of 𝑏𝑚 points in an 𝑠-dimensional hy-
percube such that, for all possible stratifications (slicings) of the
domain into 𝑏𝑚−𝑡 similar rectangular strata (cells), exactly 𝑏𝑡 points
appear in each stratum. For example, Fig. 1(b) illustrates the essence
of a (0, 4, 4)-net in base 4. Then come (𝑡, 𝑠)-sequences in base 𝑏,
which are infinite sequences of 𝑠-dimensional points such that, for
all integer𝑚, the first and all subsequent blocks of 𝑏𝑚 points form
(𝑡,𝑚, 𝑠)-nets in base 𝑏. While these definitions are independent of
the construction method, the model possibly existed thanks to the
existence of algebraic recipes for construction. Specifically, the defi-
nition of (𝑡,𝑚, 𝑠)-nets translates directly into a simple condition on
the digital framework: if we build a hybrid𝑚×𝑚 matrix

𝐻𝑚1,𝑚2,...,𝑚𝑠
=

©­­­­­­­­­­­­­­­«

𝑐
(1)
0,0 . . . 𝑐

(1)
0,𝑚−1

...
...

...

𝑐
(1)
𝑚1−1,0 . . . 𝑐

(1)
𝑚1−1,𝑚−1

...
...

...

𝑐
(𝑠)
0,0 . . . 𝑐

(𝑠)
0,𝑚−1

...
...

...

𝑐
(𝑠)
𝑚𝑠−1,0 . . . 𝑐

(𝑠)
𝑚𝑠−1,𝑚−1

ª®®®®®®®®®®®®®®®¬

, (7)

by combining the first𝑚𝑘 rows of the 𝑘th generator matrix in Eq. (3),
with

∑
𝑚𝑘 =𝑚, then each such a hybrid matrix, multiplied by 𝑉 ,

computes the allocation of the points to strata in a specific stratifi-
cation. The (0,𝑚, 𝑠)-net condition, for example, then corresponds
to requiring that each hybrid matrix is invertible, thereby ensuring
a one-to-one correspondence of points to strata. A (0, 𝑠)-sequence
requires a set of generator matrices that progressively maintains
this hybrid-matrix condition over their top-left corners.
These definitions suggest that it is desirable to keep both the

base 𝑏 and the parameter 𝑡 small, although different applications
may require different configurations. For example, the van der Cor-
put construction is a (0, 1)-sequence in base 2. Faure sequences
are (0, 𝑏)-sequences in their respective prime bases, while Niederre-
iter’s extension to Faure creates (0, 𝑏𝑞)-sequences in power-of-prime
bases 𝑏𝑞 .The first two dimensions of the Sobol sequence comprise a
(0, 2)-sequence in base 2, but the 𝑡 value increases as more dimen-
sions are taken, which gives higher quality to lower dimensions,
as noted in Sec. 2.2. Halton sequences, in contrast, do not readily
fit within the (𝑡, 𝑠)-sequences model unless it is adapted to accept

ACM Trans. Graph., Vol. 44, No. 6, Article 206. Publication date: December 2025.

206:4 • Abdalla G. M. Ahmed, Matt Pharr, Victor Ostromoukhov, and Hui Huang

different bases. However, they still exhibit a multistratified structure.
Thus, the common ground among all three families of constructions
is that they attain optimal quality at powers of the base, or the
product of bases in the case of Halton. This explains the superiority
of Sobol and Halton over Faure for graphics applications, where
lower dimensions are usually more important.

In this paper, we develop a novel construction of (0, 2𝑞)-sequences
in the corresponding 2𝑞 bases, using blocks of binary matrices. That
is, instead of using base-4 digits directly, for example, we use 2×2
binary matrices as building blocks to emulate base-4 matrices. Please
note that 𝑏 = 𝑠 is implied in the following if no base is mentioned.

2.4 Scrambling and Shuffling of LD Constructions

Beyond the algebraic recipes for constructing LD sets and sequences,
the design space is significantly enriched by scrambling techniques
that can derive new valid nets or sequences from existing ones.
Tezuka [1994] showed that multiplying arbitrary lower-triangular
matrices on the left of the generator matrices produces valid gen-
erators, since doing so preserves the ranks of all hybrid matrices.
Owen [1995], in contrast, introduced a post-processing technique,
“Owen scrambling”, that preserves the net/sequence structure. In
contrast to scrambling that applies to sample locations, the term
shuffling refers to reordering (permuting) the sample indices [Faure
and Tezuka 2002]. As (0, 𝑠)-sequences, all these are applicable to
our sequences, and we will employ them in our development.

2.5 LD Sampling in Computer Graphics

Interest in LD constructions has grown in the graphics community
over the past decade, largely focused on finding ways to impose con-
trol over these distributions, as commonly required in graphics appli-
cations. hmed et al. [2016] presented an original 2D low-discrepancy
construction that enabled imposing a blue-noise spectrum, and Per-
rier et al. [2018] subsequently imposed a blue-noise spectrum onto
selected pairs of dimensions of a Sobol sequence. While both meth-
ods compromised the discrepancy of the underlying distribution,
they provided a proof of concept that encouraged further research.
n a different line of work, Christensen et al. [2018] searched for

dyadic (i.e., base-2) (0, 2)-sequences with good spatial and spec-
tral properties, and Pharr [2019] presented a more efficient search.
Ahmed and Wonka subsequently presented a theorem [2021, The-
orem 4.2] implying that the search space is actually confined to
Owen-scrambled 2D Sobol. Soon after, the first group of authors,
led by Helmer [2021], developed an extremely fast implementation
of Owen scrambling. We regard this as an excellent example of the
community’s fast-paced learning cycles in analyzing and manipulat-
ing the inherently difficult-to-understand LD constructions. In this
paper, we present an almost complete cycle from experimentation
to the development of theoretical elements.

n more recent years, research on LD in CG has enriched the quasi-
Monte Carlo (QMC) literature with significant findings and novel
constructions, including an efficient algorithm that spans the entire
space of dyadic (0,𝑚, 2)-nets [Ahmed and Wonka 2021], a cascade
of dyadic (0,𝑚, 2)-nets over successive pairs of dimensions [Paulin
et al. 2021], a family of self-similar dyadic (0, 2)-sequences [Ahmed

et al. 2023], a gradient-descent optimization of discrete Owen scram-
bling [Doignies et al. 2024], and a practical study of a base-3 analogue
of Sobol sequences [Ostromoukhov et al. 2024]. Our current work
is partially inspired by this last work of Ostromoukhov et al., where
we thought of using base 4 instead to gain the advantage of binary
computation.

3 EXPLORATION

In this section, we report our pilot search for binary matrices that
generate (0, 2𝑞)-sequences, beginning with experimental explo-
ration and gradually developing an analytical framework distilled
from our empirical findings. Starting with four dimensions, our
initial goal is to construct a (0, 4)-sequence by searching for a set
of generator matrices that linearly map a reverse-ordered vector of
sample-index digits into vectors of digits representing coordinates
along the four axes, as in Eq. (3). It is already established and well
known that plain matrices and straightforward arithmetic in a com-
posite base like 4 would not serve the purpose. An intuitive way to
understand this deficiency is to note that a factor of the base, e.g., 2
in base 4, does not preserve all the ranks of a multiplied sequence
number digit modulo the base, which drastically limits the chance
of finding a viable set of matrices. Rather than using GF(4) symbolic
arithmetic like Niederreiter [1987], our idea is to use plain GF(2) ma-
trices and vectors, interpreting 2×2 blocks of the generator matrices
and pairs of bits of the multiplied𝑉 vector as base-4 digits. Our first
key insight is that the set of 2×2 invertible binary matrix blocks can
resolve all six permutations of the non-zero numbers in a base-4
digit. While this does not prove that building matrices from such
blocks would yield a (0, 4)-sequence, it is at least encouraging to
explore. Please note that all arithmetic hereafter is in GF(2), which
corresponds to using bitwise AND/XOR for multiplication/addition,
respectively.

We begin with an exhaustive search over a small range to validate
the concept. Without loss of generality, we assume the identity
matrix 𝐼 for the first dimension, since its matrix can be factored out
on the right of the four matrices to permute the sequence number.
Our plan is to progressively search for three binary square matrices
that expand by two rows and columns at each step and satisfy the
hybrid-matrix condition, Eq. (7). That is, at each step and for each
dimension, we expand each matrix,

𝐴𝑚+2 ←
(
𝐴𝑚 𝐶
𝑅 𝑋

)
, (8)

by adding an𝑚×2 column 𝐶 , a 2×𝑚 row 𝑅, and a 2×2 corner block
𝑋 . We will drop the suffix hereinafter where it is unambiguous.
We can always assume 𝑅 = 0 by factoring out a lower-triangular
Tezuka-scrambling matrix:

(
𝐴 𝐶
𝑅 𝑋

)
=

(
𝐼 0

𝑅𝐴−1 𝐼

) (
𝐴 𝐶
0 𝑅𝐴−1𝐶 + 𝑋

)
, (9)

where 𝐼 is an appropriately sized identity matrix. Then we use the
factoring (

𝐴 𝐶
0 𝑋

)
=

(
𝐼 0
0 𝑋

) (
𝐴 𝐶
0 𝐼

)
(10)

ACM Trans. Graph., Vol. 44, No. 6, Article 206. Publication date: December 2025.

SZ Sequences: Binary-Constructed (0, 2𝑞)-Sequences • 206:5

to reveal that 𝑋 must be invertible. This reduces the set of possible
corner-extension matrices from 16 to the following six:

{ , , , , , } . (11)
We can further exclude the third and fifth by factoring out a lower-
triangular Tezuka-scrambling matrix, reducing the set to only four:

{ , , , } , (12)
which is more favorable as a power of 2.

We built an efficient exhaustive search algorithm by packing
entire matrices into 64-bit words, enabling fast bit manipulation
and the construction of lookup tables for invertible matrices. This
approach enabled searching up to 8×8 matrices, equivalent to four
extension steps. The search confirmed the existence of multiple
working sets of matrices, which further motivated us to conduct
two additional key experiments. We first considered nesting a (0, 2)-
sequence, namely 2D Sobol, within our (0, 4) set. To this end, we
enforced the extension of the second-dimension matrix to reproduce
the Pascal matrix and searched for a complementary pair of matrices.
This approach worked successfully all the way to 8×8 matrices,
with multiple choices at each extension step. Next, we considered
ensembling two (0, 2)-sequences into a (0, 4)-sequence. To achieve
this, we used the formula recently introduced by Ahmed et al. [2023],
which states that for any pair 𝑈𝑥 ,𝑈𝑦 of upper-triangular generator
matrices to form a (0, 2)-sequence, they must satisfy

𝑈𝑦𝑈
−1
𝑥 = 𝑈𝑥𝑈

−1
𝑦 = 𝑃 . (13)

Thus, we conducted the search as with nesting and, at each exten-
sion, filtered the results that satisfied this condition. Once again, the
experiment worked successfully all the way to the 8×8 matrices.

3.1 Initial Findings

For all combinations of valid initial 2×2 blocks of the three matrices,
we consistently obtained 768 distinct valid sets for the first exten-
sion to 4×4, and 384 distinct valid extensions on each branch for
subsequent extensions to 6×6 and 8×8, suggesting an analytical con-
struction model. The fixed number of alternatives in each extension
step indicates that the degrees of freedom are likely limited to the
top and bottom blocks of the extension columns. Following this hint,
we note that the corner extension block 𝑋 in Eq. (8) is not involved
in any of the hybrid matrices and therefore, for each of the three
matrices, represents a free choice among the four options in Eq. (12).
This accounts for a factor of 43 = 64, and we verified that fixing the
extension corner blocks 𝑋 to identity reduces the list to 12 sets in
the first and 6 in subsequent extension steps. This leaves us with
the degrees of freedom in the top row, which we analyze next.
Let (

𝐴0𝐴1 . . . 𝐴 𝑗−1𝐴 𝑗
)

(14)
denote the first block row in one matrix 𝐴 of the three at the 𝑗th
extension, where each 𝐴𝑖 is a 2×2 block. By constructing a hybrid
matrix comprising 𝑗 rows of the first identity matrix together with
this row of 𝐴, we find that���� 𝐼

𝐴0 . . . 𝐴 𝑗−1 𝐴 𝑗

���� = 1 =⇒
��𝐴 𝑗

�� = 1 , (15)

leading to the conclusion that, for each of the three matrices, all
2×2 blocks of the first block row must be invertible.

Now consider taking a hybrid of the first 𝑗 − 1 rows of 𝐼 with the
first row of each of two other matrices 𝐴 and 𝐵, which yields������

𝐼
𝐴0 . . . 𝐴 𝑗−2 𝐴 𝑗−1 𝐴 𝑗

𝐵0 . . . 𝐵 𝑗−2 𝐴 𝑗−1 𝐴 𝑗

������ = 1 =⇒
����𝐴 𝑗−1 𝐴 𝑗

𝐵 𝑗−1 𝐵 𝑗

���� = 1 . (16)

Since all four elements are invertible by virtue of Eq. (15), we can
use our earlier “𝑅𝐴−1𝐶 + 𝑋 ” reduction of Eq. (9) to obtain���𝐵 𝑗−1𝐴−1𝑗−1𝐴 𝑗 + 𝐵 𝑗

��� = 1 , (17)

or equivalently ���𝐴−1𝑗−1𝐴 𝑗 + 𝐵−1𝑗−1𝐵 𝑗

��� = 1 . (18)

Let us define a symbol

𝑎 𝑗 = 𝐴−1𝑗−1𝐴 𝑗 , (19)

to designate the product of the inverse of the 𝑗−1st by the 𝑗 th entry
in the first block-row of matrix 𝐴. Then Eq (18), rewritten as��𝑎 𝑗 + 𝑏 𝑗 �� = 1 , (20)

states that the sum of corresponding symbols in the first row of
each pair 𝐴, 𝐵 of generator matrices must be invertible. This also
implies that the symbols at corresponding slots must be distinct for
the three matrices. Thus, for each slot in the first block-row, the
inserted block-matrix symbols must be

(1) invertible,
(2) distinct for each matrix, and
(3) have invertible sums.

The population of six invertible 2×2 matrices comprises two disjoint
sets,

(𝑆, 𝑍) =
©­­«

︸︷︷︸

𝑠1

,︸︷︷︸
𝑠2

,︸︷︷︸
𝑠3

,



,


︸︷︷︸

𝑧1

,︸︷︷︸
𝑧2

,︸︷︷︸
𝑧3

,



ª®®¬
, (21)

that satisfy these requirements. Each set comprises two diagonally-
mirrored triangular elements, and a counter-diagonal element that
switches between them via addition, hence we call them 𝑆 (think)
and 𝑍 (think) to make it easier to recall which is which; hence the
name SZ for these sequences. We will also hereinafter use this “S/Z”
convention to distinguish left/right-hand elements and operations,
respectively.
We conclude this subsection by noting that these three simple

rules cover all the requirements needed to satisfy the hybrid matrix
condition for the first 2×2 block matrices. Furthermore, they extend
analogously to other powers of 2. Thus, constructing binarymatrices
for generating a “(0, 2, 2𝑞)-net in base 2𝑞” reduces to finding an
alphabet of 𝑞× 𝑞 block matrices that satisfy these rules. This name
in Niederreiter’s notation just means a set of Latinized 22𝑞 points in
2𝑞 dimensions that is stratified across all 2𝑞 (2𝑞 − 1)/2 pairs of 2D
projections; cf. Jarosz et. al. [2019]. Next, we show how to extend
the matrices to arbitrary sizes for (0, 2𝑞)-sequences in base 2𝑞 .

ACM Trans. Graph., Vol. 44, No. 6, Article 206. Publication date: December 2025.

206:6 • Abdalla G. M. Ahmed, Matt Pharr, Victor Ostromoukhov, and Hui Huang

3.2 Refinement

Instead of defining the symbols in Eq. (19) in terms of adjacent
entries, it is more constructive to populate the matrices directly with
symbols. Recognizing that all first-row blocks must be invertible
enables us to achieve this through the following subtle factoring

©­­«
©­­«
𝐼

. . .

𝐼

ª®®¬
,
©­­«
𝐼 . . . 𝐴 𝑗

. . .
...
𝐼

ª®®¬
,
©­­«
𝐼 . . . 𝐵 𝑗

. . .
...
𝐼

ª®®¬
,
©­­«
𝐼 . . . 𝐶 𝑗

. . .
...
𝐼

ª®®¬
ª®®¬

=
©­­«
𝐼

. . .

𝐴−1𝐽

ª®®¬
©­­«
©­­«
𝐼

. . .

𝐼

ª®®¬
,
©­­«
𝐼 . . . 𝐼

. . .
...
𝐼

ª®®¬
,
©­­«
𝐼 . . . 𝐵 𝑗𝐴

−1
𝐽

. . .
...
𝐼

ª®®¬
,
©­­«
𝐼 . . . 𝐶 𝑗𝐴

−1
𝐽

. . .
...
𝐼

ª®®¬
ª®®¬
©­­«
𝐼

. . .

𝐴 𝑗

ª®®¬
.

(22)

The common 𝑆 (left-hand-side) factor represents a Tezuka scram-
bling and can therefore be dropped. Thus, without loss of generality,
we can populate all blocks in the first row of the second-dimension
matrix (the first of the three) with identity matrix blocks . Once
this final factoring is implemented, the exhaustive search reduces
to this single quadruple of generator matrices:

©­­
«

, , ,
ª®®
¬
, (23)

here shown to 32-bit depth. Based on our exhaustive search, this
quadruple serves as the template for all binary-matrix-constructed
(0, 4)-sequences, and all other possible variants can be derived by
reintroducing the degrees of freedom factored out earlier, as we will
discuss later.
Careful inspection of these matrices reveals that they are built

exclusively from the 𝑆 block symbols in Eq. (21), plus empty (0)
blocks. Further inspection, guided by the preliminary assumption
that these sequences are related to Faure’s, reveals that they are in
fact Pascal matrices

P(𝑎) =
(
𝑝𝑖, 𝑗 :

(
𝑗

𝑖

)
𝑎 𝑗−𝑖

)
, (24)

constructed from these four block symbols. For example,

P() =
©­­­­­­«
𝑝row,col :

(
col
row

)
︸︷︷︸
mod 2

()col−row
ª®®®®®®¬
=

0 1 2 3 4 5 6 7
0 2 4 6

0 1 4 5
0 4

0 1 2 3
0 2

0 1
0

1

. (25)

4 SZ SEQUENCES

Based on our exhaustive search for binary (0, 4)-sequence genera-
tors and similar partial searches for (0, 8) and (0, 16) sequences, we
find that what characterizes the 𝑆 set of 2×2 block symbols, com-
pared to the complementing 𝑍 set in Eq. (21), is that it is not only
closed under addition, but also multiplication, and hence constitutes
a finite field, as dictated by Wedderburn’s little theorem, stating that
“every finite division ring is a field”. In a nutshell, finite fields are
sets of elements with operations analogous to addition and multi-
plication, closed under both operations, and equipped with neutral
elements analogous to 0 and 1, as well as additive and multiplicative
inverses. The only missing element in our 𝑆 alphabet to make a field
is zero, but in fact this element has existed and been used throughout

Algorithm 1: Constructing an SZ (0, 2𝑞)-sequence.
Input : (1) index 𝑞 of required power-of-2 dimension 𝑠 = 2𝑞 .
Output :A set of 𝑠 binary generator matrices to produce a

(0, 𝑠)-sequence.
1 Search for a set (alphabet) {𝑥𝑖 }𝑠−1𝑖=1 of 𝑠 − 1 invertible 𝑞 × 𝑞

matrices that is closed under addition, multiplication, and
inversion;

2 Build a Pascal matrix P(𝑥) of the desired numerical
resolution for each symbol in the alphabet;

3 Along with an equally sized identity matrix, these constitute
the desired set of generator matrices.

our development: it is the symbol used to build the identity matrix
in our set. This can be slightly confusing, since we have a “grand”
identity matrix for the final set of generator matrices, built from
the 0 symbol, and a “Pascal-ed” identity symbol used to build the
second-dimension generator matrix.

Once we arrive at this conclusion for 4D, we can readily envision
analogous constructions for higher powers of 2 dimensions, as sum-
marized in Algorithm 1. Using this algorithm, we constructed SZ
sequences for different values of 𝑞, and empirically verified their
(0, 𝑠)-sequence property by building and validating all the sets of
hybrid matrices. It is worth noting that, as a special case of our
model, the conventional Pascal matrix in 2D Sobol/Faure construc-
tions is the Pascal matrix of the identity of a 2D alphabet comprising
granular 0 and 1 as its block matrices. Thus, we hereinafter treat an
all-zero 𝑞×𝑞 block matrix as an intrinsic symbol in our alphabets.

While we did not proactively choose to use fields, they automat-
ically emerged, bringing us closer to Faure’s sequences and their
Niederreiter’s extension. Let us briefly abstract our empirical search
results in Section 3 to understand what happened: We constructed
the following four base-4 matrices:

©­­­­
«

1
. 1
. . 1
. . . 1
. . . . 1
. 1
. 1
. 1
. 1
. 1
. 1
. 1
. 1 . . .
. 1 . .
. 1 .
. 1

,

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
. 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1
. . 1 1 . . 1 1 . . 1 1 . . 1 1
. . . 1 . . . 1 . . . 1 . . . 1
. . . . 1 1 1 1 1 1 1 1
. 1 . 1 1 . 1
. 1 1 1 1
. 1 1
. 1 1 1 1 1 1 1 1
. 1 . 1 . 1 . 1
. 1 1 . . 1 1
. 1 . . . 1
. 1 1 1 1
. 1 . 1
. 1 1
. 1

,

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1
. 1 . 3 . 2 . 1 . 3 . 2 . 1 . 3
. . 1 2 . . 2 3 . . 3 1 . . 1 2
. . . 1 . . . 2 . . . 3 . . . 1
. . . . 1 2 3 1 3 1 2 3
. 1 . 3 3 . 2
. 1 2 3 1
. 1 3
. 1 2 3 1 2 3 1 2
. 1 . 3 . 2 . 1
. 1 2 . . 2 3
. 1 . . . 2
. 1 2 3 1
. 1 . 3
. 1 2
. 1

,

1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1
. 1 . 2 . 3 . 1 . 2 . 3 . 1 . 2
. . 1 3 . . 3 2 . . 2 1 . . 1 3
. . . 1 . . . 3 . . . 2 . . . 1
. . . . 1 3 2 1 2 1 3 2
. 1 . 2 2 . 3
. 1 3 2 1
. 1 2
. 1 3 2 1 3 2 1 3
. 1 . 2 . 3 . 1
. 1 3 . . 3 2
. 1 . . . 3
. 1 3 2 1
. 1 . 2
. 1 3
. 1

ª®®®®
¬
. (26)

These are exactly the ones in Eq. (23), just encoding each distinct
2×2 block as a base-4 digit, namely indexed after 0 and the three
𝑆 symbols in Eq. (21). When multiplied by a base-4 digit-reversed
column vector representation of a sequence number, these matrices
generate a (0, 4)-sequence in base 4, i.e., a sequence of 4D points
fully multi-stratified for powers of 4 numbers of points. However,
multiplication does not follow the standard modulo-4 arithmetic
but instead uses a special table

𝑍 0 1 2 3
𝑆
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

(27)

that amends the degeneratemodulo-4multiplication table, preparing
it for Faure construction. Here 𝑆 refers to the left multiplicand digit

ACM Trans. Graph., Vol. 44, No. 6, Article 206. Publication date: December 2025.

SZ Sequences: Binary-Constructed (0, 2𝑞)-Sequences • 206:7

from the matrix, and 𝑍 to the right one from the vector. Finally, this
arithmetic table is neither built arbitrarily nor looked up; it is intrinsic
to the matrix-block alphabet and is evaluated automatically via GF(2)
matrix-vector multiplication:

©­­­«
ª®®®¬
()

=
©­­­«

ª®®®¬
. (28)

Please mind the bit-reversed ordering: the top row is least significant
bit, so is 1 and is 2.
Although we have arrived at this construction experimentally

and independently, as detailed in the preceding Section 3, once ab-
stracted this way we observe a close similarity to Niederreiter’s an-
alytically developed construction [1987; 1992] that extends Faure’s
sequences to power-of-prime bases. Moreover, the uniqueness of
finite fields strongly suggests that our construction coincides with
Niederreiter’s. This remains a hypothesis, however, awaiting analyti-
cal validation. Themultiple degrees of freedom in both constructions
can produce different realizations, making empirical verification
difficult. In any case, both constructions span the same universe of
(0, 2𝑞)-sequences in base 2𝑞 . It is the emphasized text in the preced-
ing description, however, that is the essential difference between our
construction and Niederrieter’s: Instead of using symbolic GF(2𝑞)
arithmetic with lookup tables, as in standard implementations of
Niederreiter sequences [Bratley et al. 1992], our field elements are
embedded as block matrices in GF(2) generator matrices, which han-
dle both the field arithmetic and the bijection operators in Niederre-
iter’s construction. This makes our binary-based construction far
more efficient and scalable. Another important advantage is that our
experimental approach led us to discover nesting and ensembling,
which make a significant difference in graphics applications, as we
will see later in Section 5.2.

4.1 Alphabets

Identifying alphabets as finite fields brings many insights and im-
plications. The most relevant property for our construction is that
in fields like our alphabets there exists a symbol (actually multiple)
that multiplicatively cycles through all other non-zero symbols; that
is, it can generate all the non-zero elements as its powers. Such a
symbol is called “primitive” and is commonly denoted by 𝛼 . The
alphabet can then be written as

Σ = {0, 𝐼 , 𝛼, 𝛼2, . . . , 𝛼𝑞−2} . (29)

Aside from analytical insights and proofs, alpha elements are
also highly useful in practice. The first advantage they offer is a
straightforward search plan for alphabets, as summarized in Algo-
rithm 2, replacing the complex and time-consuming stack-based
searches we used in our exploration phase. Secondly, noting that an
alpha element belongs to a unique alphabet, the search algorithm
can easily be modified to enumerate all alphabets by dividing the
number of alpha elements in the universe of invertible matrices by
the number of alpha elements in a single alphabet. We performed
such a search over the feasible range and obtained(���{Σ(𝑞)}6𝑞=1

���) = (1, 1, 8, 336, 64512, 53329920) . (30)

Algorithm 2: AlphaSearch: Searching for an alphabet.
Input : (1) A power of 2 size of elements 𝑠 = 2𝑞 ,

(2) A timeout number of attempts T.
Output :An alphabet of 𝑠 block matrices.

1 for 𝑖 ← 0 to 𝑇 − 1 do
2 Construct a random invertible 𝑞 × 𝑞 matrix block 𝑥 ;
3 Repeatedly multiply 𝑥 by itself until you get 𝐼 , and record

the needed number of multiplications: its “root index” 𝑛;
4 if 𝑛 = 𝑠 − 1 then
5 return

{
0,

{
𝑥𝑖

}𝑠−2
𝑖=0

}
;

6 Return a timeout message.

A brief Internet search identified this sequence as OEISA258745 [2015],
described as “Order of general affine group AGL(n,2) (=A028365(n))
divided by (n+1)”. This suggests the possibility of constructing al-
phabets algorithmically, which we leave for future research.

4.2 Randomization

With the template set of generator matrices built exclusively from
alphabet building blocks, we can now randomize the set by rein-
troducing the degrees of freedom we previously factored out. The
extension rows removed in Eq. (9), along with the𝑋 diagonal blocks
factored out later, correspond exactly to Tezuka’s [1994] scrambling
mentioned in Section 2.4. Beyond that, our model readily supports
Owen’s [1995] scrambling, Faure–Tezuka [2002] shuffling in both 2
and 2𝑞 bases, as well as XOR-scrambling [Kollig and Keller 2002].

4.3 Nesting

The key idea of nesting, introduced in the exploration phase, is to
find an alphabet over 22𝑞 whose symbols embed those of a given
alphabet over 2𝑞 , in such a way that the generators of the nested
sequence can be reproduced by sequence-preserving manipulations
of the corresponding generators of the nesting sequence. As illus-
trated in Fig. 2, it is always possible to refactor a generator Pascal
matrix of a 𝑞×𝑞 block symbol 𝑎 into a scrambled Pascal matrix of a
corresponding 2𝑞×2𝑞 nesting symbol

⟨𝑎⟩ =
(
𝑎2

𝑎2

)
. (31)

Hence, the task of nesting reduces to finding a 22𝑞 alphabet that
includes the set {⟨𝑎𝑖 ⟩}2

𝑞−1
𝑖=1 of all nesting symbols. That is, finding a

2𝑞×2𝑞 alpha matrix whose powers include this set. A brute-force
approach to such a search is far more difficult than before, since we
are seeking highly specific alphabets. We therefore generated and
analyzed all nesting alphabets within a feasible range and, fortu-
nately, found that all nesting alphabets are built exclusively from
the nested alphabet symbols. This observation dramatically reduces
the search space from 24𝑞2 to 24𝑞 , making it feasible to reach 64K
dimensions. This reduction not only enables us to find working
alphabets but also to sample them uniformly.

ACM Trans. Graph., Vol. 44, No. 6, Article 206. Publication date: December 2025.

206:8 • Abdalla G. M. Ahmed, Matt Pharr, Victor Ostromoukhov, and Hui Huang

P(𝑎) =

𝑎0𝑎1𝑎2𝑎3𝑎4𝑎5𝑎6𝑎7𝑎8𝑎9
𝑎0 𝑎2 𝑎4 𝑎6 𝑎8
𝑎0𝑎1 𝑎4𝑎5
𝑎0 𝑎4
𝑎0𝑎1𝑎2𝑎3
𝑎0 𝑎2
𝑎0𝑎1
𝑎0
𝑎0𝑎1
𝑎0

©­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®¬

=

𝑎0𝑎1𝑎2𝑎3𝑎4𝑎5𝑎6𝑎7𝑎8𝑎9
𝑎0 𝑎2 𝑎4 𝑎6 𝑎8
𝑎0𝑎1 𝑎4𝑎5
𝑎0 𝑎4
𝑎0𝑎1𝑎2𝑎3
𝑎0 𝑎2
𝑎0𝑎1
𝑎0
𝑎0𝑎1
𝑎0

©­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®¬

=

𝑎0𝑎1
𝑎0
𝑎0𝑎1
𝑎0
𝑎0𝑎1
𝑎0
𝑎0𝑎1
𝑎0
𝑎0𝑎1
𝑎0

©­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®¬

𝑎0 𝑎2 𝑎4 𝑎6 𝑎8
𝑎0 𝑎2 𝑎4 𝑎6 𝑎8
𝑎0 𝑎4
𝑎0 𝑎4
𝑎0 𝑎2
𝑎0 𝑎2
𝑎0
𝑎0
𝑎0
𝑎0

©­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®¬

=

𝐼 𝑎
𝐼
𝐼 𝑎
𝐼
𝐼 𝑎
𝐼
𝐼 𝑎
𝐼
𝐼 𝑎
𝐼

©­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®¬

⟨𝑎⟩0 ⟨𝑎⟩1 ⟨𝑎⟩2 ⟨𝑎⟩3 ⟨𝑎⟩4

⟨𝑎⟩0 ⟨𝑎⟩2

⟨𝑎⟩0 ⟨𝑎⟩1

⟨𝑎⟩0

⟨𝑎⟩0

©­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®¬

=

(
𝐼 𝑎

𝐼

)
P(⟨𝑎⟩)

(a) Granular (b) 2×2 Grouping (c) Factoring (d) Reinterpreting
1

Fig. 2. A step-by-step refactoring illustration of a Pascal matrix of a given 𝑞×𝑞-block-matrix symbol 𝑎 into a scrambled Pascal matrix of a 2𝑞×2𝑞 nesting

symbol ⟨𝑎⟩ =
(
𝑎2

𝑎2

)
. The process is generic, requiring neither symbol to belong to a valid alphabet.

Algorithm 3: NestSort: order alphabets to enable ensem-
bling.
Input :An alphabet Σ of 𝑠 = 2𝑞 block-matrix symbols.
Output :An ordered alphabet with a nested substructure.

1 Ensure the placement of the 0 and 𝐼 symbols in the first and
second slots, respectively;

2 𝑘 ← 2;
3 while 𝑘 < 𝑠 do
4 for 𝑖 ← 1 to 𝑘 − 1 do
5 𝑥 ← Σ[𝑖] + Σ[𝑘];
6 Locate the slot 𝑗 containing 𝑥 ;
7 Swap Σ[𝑖 + 𝑘] with Σ[𝑗];
8 𝑘 ← 2 · 𝑘 ;

Once the alphabet is found, the generator matrices are built ac-
cording to Algorithm 1, and the generator matrices of each embed-
ded symbol 𝑎 are then multiplied by the factor

P(𝑎) =
(
𝐼 𝑎

𝐼

)
P(⟨𝑎⟩) , (32)

to restore the original matrices, as illustrated in Fig. 2. Note that for
the nesting set, this multiplication corresponds to Tezuka scrambling
and therefore preserves the structure of the sequence.
We conclude this section by noting that nesting, as described

above, works only by doubling 𝑞, squaring the dimension at each
upsampling step of the sequence space, rather than simply doubling
the dimension as one might hope.

4.4 Ensembling

Ensembling is less obvious than nesting, since it depends on a non-
obvious property. We start with a nested sequence, and the key
idea is to try to make subsequent bands of dimensions of the nest-
ing sequence, with respect to each other, look identical to their
counterparts in the nested band. This process begins by arranging
the symbols in a suitable order, as outlined in Algorithm 3, which
arranges the symbols in a literally nested algebraic structure of
bands

𝐵1 ← (0, 𝐼) , 𝐵2 ← (𝐵1, 𝐵1 + 𝑥1) , 𝐵3 ← (𝐵2, 𝐵2 + 𝑥2) , . . . (33)

This idea rests on an interesting property

P(𝑎 + 𝑥) = P(𝑎)P(𝑥) , (34)

of Pascal matrices that summing the symbols is equivalent to mul-
tiplying the corresponding Pascal matrices. A sketch of the proof
begins by noting that each entry(

𝑗

𝑖

)
(𝑎 + 𝑥) 𝑗−𝑖 , (35)

of P(𝑎 + 𝑥) on the right-hand side embodies a binomial expansion
with the same range of powers as the corresponding row–column
product on the left-hand side; it then remains only to equate the
binomial coefficients. Applying this property to the nested struc-
ture in Eq. (33), we observe that adding a symbol to each subset
is equivalent to multiplying its generator matrix by those of the
subset, with the net effect of reordering the points in the subset
while preserving their geometry. In other words, the sub-sequence
of each band is merely a reordering of the reference band’s sequence
and can therefore be transformed into a nested sequence using the
same restoration in Eq. (32). In fact, it is the identical sequence, but
in a different order. This can be observed in Fig. 1(b), where all
the red (0, 2) pairs and cyan (0, 4) quadruples appear identical. In
Appendix A, we present a step-by-step demonstration of nesting
and ensembling used to generate the sequence shown in Fig. 1(b).

5 RESULTS AND APPLICATIONS

To evaluate the performance of SZ sequences, we tested them both
on the numerical integration of synthetic functions and on rendering
tasks. We also include empirical measurements of discrepancy. Our
implementation is provided in the supplemental material.

5.1 Numerical Integration

To compare the performance of SZ points with other point sets for
integration, we measured the mean relative squared error (MRSE)
when integrating a variety of simple analytic functions. We follow
the approach developed by Jarosz et al. [2019, Section 5.2], summa-
rized below. Three 1D functions

𝑔0 (𝑟) = 1 − binaryStep(𝑟, 𝑟end) , (36)

𝑔1 (𝑟) = 1 − linearStep(𝑟, 𝑟start, 𝑟end) , (37)

𝑔∞ (𝑟) = e−𝑟
2/(2𝜎2) , (38)

serve as building blocks, with𝑟end = 3/𝜋 , 𝑟start = 𝑟end − 0.2, and 𝜎 =
1/3. Projection of an 𝑛-dimensional point 𝑝 to a set of dimensions
𝑑𝑖 is denoted by

𝑝𝑑1,...,𝑑𝑛 = (𝑝𝑑1 , . . . , 𝑝𝑑𝑛) , (39)

ACM Trans. Graph., Vol. 44, No. 6, Article 206. Publication date: December 2025.

SZ Sequences: Binary-Constructed (0, 2𝑞)-Sequences • 206:9

𝑛-dimensional functions are then defined by taking the vector norm
of projected points

𝑓 𝐷𝑑1,...,𝑑𝑛 (𝑝) = 𝑔𝐷 (∥𝑝𝑑1 , . . . , 𝑝𝑑𝑛 ∥). (40)

These are plots of associated 2D functions:

𝑓 01,2 𝑓 11,2 𝑓 ∞1,2

We used four forms of functions for our tests:
• 𝑓 𝐷1,2 ∗ 𝑓 𝐷3,4: the product of two 2D functions.
• 𝑓 𝐷1,2,3,4: a fully 4D function.
• 𝑓 𝐷1,2∗𝑓 𝐷3,4+𝑓 𝐷5,6∗𝑓 𝐷7,8: the sum of the product of two 2D functions.
• 𝑓 𝐷1,2 ∗ 𝑓 𝐷1,3 ∗ 𝑓 𝐷1,4 ∗ 𝑓 𝐷2,3 ∗ 𝑓 𝐷2,4 ∗ 𝑓 𝐷3,4: the product of functions of
all 2D projections of a 4D point.

For each of these and for each of the three 𝑔 functions defined above,
we computed a reference value and then ran 1,024 independent
trials, each taking up to 216 samples. Owen scrambling was used
to randomize the low-discrepancy sequences. In addition to our
SZ sequence and the Sobol sequence, we also measured results
with independent uniform random numbers and with the Halton
sequence. For SZ and Sobol, we also measured results using samples
starting at the 4th dimension, to reflect the case in rendering where
such integrands might be encountered after a few dimensions of
the sequence had already been consumed. We will use “SZ-d0” and
“SZ-d4” to distinguish these, and similarly for Sobol. We measured
MRSE at all power-of-two number of samples
The resulting error plots are shown in Fig. 4. For all functions,

we observe that the performance of all samplers other than the
independent sampler is similar for 𝑔0; therefore, in the following
we focus on 𝑔1 and 𝑔∞. For both the first and second function
forms, SZ-d0 matches Sobol-d0’s performance at power-of-4 sample
counts, although it exhibits higher error at intermediate powers
of two However, SZ-d4 attains error levels comparable to SZ-d0,
whereas Sobol-d4 is significantly worse. We would expect this trend
to continue at higher dimensions, as SZ maintains its (0, 2)- and
(0, 4)-sequences, while the quality of lower-dimensional projections
of Sobol points worsens. For the third function form, the sum of the
product of two 2D functions, both SZ-d0 and SZ-d4 significantly
outperform the Sobol sampler. We believe that this is due both to it
providing (0, 2)-sequences for each of the constituent 2D functions
but also proving (0, 4)-sequences for each term. Finally, in the prod-
uct of all of the 2D projections of a 4D point, we again see SZ-d0
and SZ-d4 matching Sobol at power-of-4 sample counts, and SZ-d4
having much lower error than Sobol-d4.

5.2 Rendering

To quickly assess the potential of SZ sequences in rendering, we
implemented a special scene setup that uses only 2D constituents
to build the light-transport path. Specifically, we modified pbrt so
that the first two dimensions of the sequence are used to select a
point inside each pixel area, the next two are used to select a point

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Number of Points

MRSE
fD
1,2 ∗ fD

3,4
Independent
Halton
Sobol-d0
Sobol-d4
SZ-d0
SZ-d4

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Number of Points

MRSE
fD
1,2 ∗ fD

3,4
Independent
Halton
Sobol-d0
Sobol-d4
SZ-d0
SZ-d4

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216
10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Number of Points

MRSE
fD
1,2 ∗ fD

3,4
Independent
Halton
Sobol-d0
Sobol-d4
SZ-d0
SZ-d4

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216

10−6

10−5

10−4

10−3

10−2

10−1

100

Number of Points

MRSE
fD
1,2,3,4

Independent
Halton
Sobol-d0
Sobol-d4
SZ-d0
SZ-d4

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Number of Points

MRSE
fD
1,2,3,4

Independent
Halton
Sobol-d0
Sobol-d4
SZ-d0
SZ-d4

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216
10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Number of Points

MRSE
fD
1,2,3,4

Independent
Halton
Sobol-d0
Sobol-d4
SZ-d0
SZ-d4

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Number of Points

MRSE
fD
1,2 ∗ fD

3,4 + fD
5,6 ∗ fD

7,8
Independent
Halton
Sobol-d0
Sobol-d4
SZ-d0
SZ-d4

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Number of Points

MRSE
fD
1,2 ∗ fD

3,4 + fD
5,6 ∗ fD

7,8
Independent
Halton
Sobol-d0
Sobol-d4
SZ-d0
SZ-d4

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216
10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Number of Points

MRSE
fD
1,2 ∗ fD

3,4 + fD
5,6 ∗ fD

7,8
Independent
Halton
Sobol-d0
Sobol-d4
SZ-d0
SZ-d4

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216
10−7

10−6

10−5

10−4

10−3

10−2

10−1

Number of Points

MRSE
fD
1,2 ∗ fD

1,3 ∗ fD
1,4

∗fD
2,3 ∗ fD

2,4

∗fD
3,4

Independent
Halton
Sobol-d0
Sobol-d4
SZ-d0
SZ-d4

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Number of Points

MRSE
fD
1,2 ∗ fD

1,3 ∗ fD
1,4

∗fD
2,3 ∗ fD

2,4

∗fD
3,4

Independent
Halton
Sobol-d0
Sobol-d4
SZ-d0
SZ-d4

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Number of Points

MRSE
fD
1,2 ∗ fD

1,3 ∗ fD
1,4

∗fD
2,3 ∗ fD

2,4

∗fD
3,4

Independent
Halton
Sobol-d0
Sobol-d4
SZ-d0
SZ-d4

(a) Binary Step (𝑔0) (b) Linear (𝑔1) (c) Gaussian (𝑔∞)

Fig. 4. Mean relative squared error when integrating of a variety of analytic

4- and 8-dimensional functions. In these plots, “Sobol-d0” and “Sobol-d4”

denote Sobol points starting at dimension 0 and 4, respectively, and similarly

for SZ. SZ-0 performs as well as Sobol at power-of-4 sample counts, though is

sometimes worse at intermediate power-of-2 counts. In some cases (e.g., the

third row of 𝑔∞), it gives significantly lower error. SZ-4 generally performs

as well as SZ-0, while Sobol-4 often has higher error than Sobol-0.

on the lens, the next two to importance-sample a direction from
the environment map’s distribution, and then two more are used
to sample the BSDF. Note that this differs from pbrt’s default as-
signment of dimensions for integration which does not consider
the possibility of (0, 2𝑞)-sequences and so consumes additional 1D
samples such as for time and sampling which light source to sample
from early dimensions of samplers. With this setup, we evaluated
global sampling with Sobol and SZ points for rendering direct illu-
mination from an environment map, using two error metrics: MRSE
and the perceptually-based FLIP metric [Andersson et al. 2020, 2021].
We chose the Sportscar scene for the evaluation since it includes a
variety of complex measured BSDFs, ranging from nearly diffuse to
highly specular. Fig. 5 shows results with a high-dynamic range en-
vironment map, including crops of representative parts of the image
rendered at 64spp. The SZ sampler achieves a meaningful reduction
of 1.93× in MRSE, and this error reduction is visually evident in

ACM Trans. Graph., Vol. 44, No. 6, Article 206. Publication date: December 2025.

206:10 • Abdalla G. M. Ahmed, Matt Pharr, Victor Ostromoukhov, and Hui Huang

Reference

MRSE / FLIP

Sobol

0.037195 / 0.049664

Sobol MRSE SZ

0.019270 / 0.047296

SZ MRSE Reference

0.20

0

Fig. 5. Comparisons of rendering using the Sobol sequence and using our SZ sequence with the Hangar Interior environment map. Rendering was at 64spp

with direct lighting only. Crops show representative results; full images are available in our supplemental material.

images. In this case, we can see that SZ does not suffer from the
characteristic checkerboard pattern of unconverged Sobol sampling.
See Section ?? for additional results with this scene, including a
variety of different environment maps, visualizations of error across
entire images, and error measurements at additional sampling rates.
At the other extreme, we experimented with a minimal-change,

drop-in implementation in pbrt-3 by only replacing the Sobol matri-
ces with SZ ones for global sampling and modifying the 2D-based
Z-indexed Sampler [Ahmed and Wonka 2020] to sample all dimen-
sions at once using SZ sequences. With this setup, we obtained
promising results that surpassed Halton and were comparable to
Sobol.
Guided by these preliminary tests, we adopt the Z-indexed sam-

pling framework as our preferred model for distributing SZ samples.
Our implementation is included in the supplementary materials.
In Fig. 6, we compare our SZ sampler with state-of-the-art pbrt
samplers across various common test scenes. We use the recently
introduced Q-ART Owen Scrambling [Ahmed 2025] to shuffle the
pixel Z-indices in these examples, but have obtained similar results
with hashing [Ahmed and Wonka 2020]. Overall, SZ generally per-
forms favorably, offering a balanced compromise between aliasing
reduction and noise suppression at low and high sampling rates,
respectively, with only a few exceptions. In particular, it tends to
outperform global samplers at low sampling rates and the original
2D-based Z sampler at higher rates. It is also worth noting that
the integrator plays a significant role in differentiating the sam-
plers, with variations ranging from substantial differences in direct
lighting to barely noticeable differences with BDPT.

Despite the generally strong performance of the SZ-based sampler,
we occasionally observe failure cases, for instance, in Fig. 6(H),
where a coarse noise artifact appears at relatively low sampling
rates, most likely due to a pair of strongly correlated dimensions
caused by, for example, splitting a 3D sample between two (0, 4)
bands. Avoiding such situations may require more control over the
sampler–integrator interaction, which we leave for future research.

5.3 Discrepancy

The essence of Niederreiter’s framework [1992, Chapter 4] is that
identifying a sequence such as SZ as a (0, 2𝑞)-sequences in base 2𝑞 is

sufficient to qualify it as a low-discrepancy sequence. Nevertheless,
we ran a test within the feasible range to empirically validate our
framework, and obtained the results shown in Fig. 7 that confirm the
theoretical predictions. Note that we skipped the first two dimen-
sions, as they are identical to those of Sobol, Faure, and Niederreiter.

5.4 Frequency Spectra

In Fig. 1 we see a comparison between frequency spectra of cor-
responding pairs of dimensions between SZ and Sobol sequences.
Our construction evidently admits better pairwise projections at
powers of 2𝑞 octaves, though the discrepancy plots in Fig. 7 suggest
that Sobol behaves better at a more granular powers-of-2 octaves.
Further, the fact that all consecutive pairs of dimensions of ensem-
bled SZ sequences are dyadic (0, 2)-sequences makes them ripe for
different optimizations of such sequences like those suggested by
Ahmed et al. [2024; 2023] or Doignies et. al. [2024].

5.5 Time and Space Complexity

As a binary-matrix-based construction, the baseline for time and
space complexity is that of Sobol sequences, and migrating from
Sobol in existing systems is as simple as replacing the matrices.
Notably, the matrices are identical for the first two dimensions,
thereby preserving any special code for inversion [Grünschloß et al.
2012] or fast execution [Ahmed 2024].

Understanding the anatomy of SZ matrices, however, offers mul-
tiple opportunities to optimize space and/or time complexity. For
example, in the code listing of Fig. 8(a), we exploit the alpha property
to generate a complete set of 256 pairwise-stratified points in 16D,
as visualized in Fig. 8(b). In this example, the space complexity is
reduced to a single integer 0xB6C8 representing the alpha symbol
of the alphabet in Fig. 1(b), while other symbols are evaluated im-
plicitly by computing subsequent dimensions from preceding ones.
Combined with Owen- or XOR-scrambling, this could represent a
viable GPU-friendly sampling solution for some applications, or a
self-contained sample generator for hardware integration and/or
embedded systems. Although the example is limited to two octaves
and does not use nesting, similar specialized solutions could be
tailored for more advanced requirement

ACM Trans. Graph., Vol. 44, No. 6, Article 206. Publication date: December 2025.

SZ Sequences: Binary-Constructed (0, 2𝑞)-Sequences • 206:11

(A1)
16

(A2)
64

20 21 22 23 24 25 26 27 28 29 210 211 212
10−4

10−3

10−2

Number of Points

RMSE
3-Lights Buddha
Direct Lighting

pbrt-3

Independent
Padded Sobol
Halton
Sobol
ZSobol
SZ-Z

(B1)
32

(B2)
4K

20 21 22 23 24 25 26 27 28 29 210 211 212

10−2

10−1

Number of Points

RMSE
Chopper Titan
Path Integrator

pbrt-3

Independent
Padded Sobol
Halton
Sobol
ZSobol
SZ-Z

(C1)
64

(C2)
256

20 21 22 23 24 25 26 27 28 29 210 211 212

10−2

10−1

Number of Points

RMSE
Sanmiguel

BDPT Integrator
pbrt-3

Independent
Padded Sobol
Halton
Sobol
ZSobol
SZ-Z

(D1)
64

(D2)
256

20 21 22 23 24 25 26 27 28 29 210 211 212

10−3

10−2

Number of Points

RMSE
Cornell Box

Path Integrator
pbrt-4

Independent
Padded Sobol
Halton
Sobol
ZSobol
SZ-Z

(E1)
128

(E2)
128

20 21 22 23 24 25 26 27 28 29 210 211 212

10−2

10−1

Number of Points

RMSE
Barcelona Pavilion

VolPath
pbrt-4

Independent
Padded Sobol
Halton
Sobol
ZSobol
SZ-Z

(F1)
512

(F2)
2K

20 21 22 23 24 25 26 27 28 29 210 211 212

10−2

10−1

Number of Points

RMSE
Bistro Vespa

VolPath
pbrt-4

Independent
Padded Sobol
Halton
Sobol
ZSobol
SZ-Z

(G1)
2K

(G2)
4K

20 21 22 23 24 25 26 27 28 29 210 211 212

10−2

10−1

Number of Points

RMSE
Watercolor Camera 1

VolPath
pbrt-4

Independent
Padded Sobol
Halton
Sobol
ZSobol
SZ-Z

(H1)
8

(H2)
128

20 21 22 23 24 25 26 27 28 29 210 211 212

10−2

10−1

Number of Points

RMSE
Head

VolPath
pbrt-4

Independent
Padded Sobol
Halton
Sobol
ZSobol
SZ-Z

(a) Scene (b) Reference SPP (c) Independent (d) Padded Sobol (e) Halton (f) Sobol (g) ZSobol (h) SZ-Z (ours) (i) RMSE
1

Fig. 6. Example renderings comparing sampling with Z-indexed SZ sequence (SZ-Z) to different state-of-the-art samplers. Specifically, it combines the

dithering functionality of ZSobol at low sampling rates with the faster convergence of high-dimensional samplers like Sobol and Halton. We could, however,

handpick a few of occasional instances, e.g., (D2) and (E2), where SZ exhibits some noisy artifacts, as well as an example complete scene of “a failure case”, (H),

where SZ-Z is notably inferior, although it still takes over eventually. The complete scenes are available in the supplementary materials, along with a few more

examples.

ACM Trans. Graph., Vol. 44, No. 6, Article 206. Publication date: December 2025.

206:12 • Abdalla G. M. Ahmed, Matt Pharr, Victor Ostromoukhov, and Hui Huang

21 22 23 24 25 26 27 28 29 210 211 212

10−2

10−1

Number of Points

3D Star Discrepancy D∗
Random
Sobol
SZ4

SZU

21 22 23 24 25 26 27 28 29 210 211 212

10−2

10−1

Number of Points

4D Star Discrepancy D∗
Random
Sobol
SZ4

SZU

20 21 22 23 24 25 26 27 28 29 210211212213214215216217218219220

10−5

10−4

10−3

10−2

10−1

100

Number of Points

4D GL2 Discrepancy Random
Sobol
SZ4
SZU

20 21 22 23 24 25 26 27 28 29 210211212213214215216217218219220
10−4

10−3

10−2

10−1

100

Number of Points

8D GL2 Discrepancy Random
Sobol
SZ8
SZU

20 21 22 23 24 25 26 27 28 29 210211212213214215216217218219220

10−2

10−1

100

101

Number of Points

16D GL2 Discrepancy Random
Sobol
SZ16
SZU

20 21 22 23 24 25 26 27 28 29 210211212213214215216217218219220

100

101

102

Number of Points

32D GL2 Discrepancy Random
Sobol
SZ32
SZU

(a) (b) (c) (d) (e) (f)

Fig. 7. (a, b) Star 𝐷∗ and (c–f) Generalized L2 discrepancy plots comparing different SZ sequences to Sobol, each averaged over Owen-scrambled realizations.

The 4D L2 plots align well with the 𝐷∗ ones, suggesting L2 as a reliable measure of discrepancy. While SZ sequences seem to outperform Sobol in discrepancy

measure beyond 4D, it has to be noted that Sobol has the advantage of being “universal”; that is, it is one and the same Sobol sequence compared to different

sequences from the SZ family, one for each power-of-two dimensions. The “. . . ⟨⟨⟨⟨2⟩4⟩16⟩256⟩ . . .”-nested/ensembled is possibly the closest SZ construction

to a universal sequence, hence we include it as SZU (SZ-Universal) in these comparisons.

1 #include	<stdio.h>
2
3 const	int	alpha	=	0xB6C8;
4
5 inline	int	MxV(int	M,	int	V)	{
6 				return	(
7 								(V	&							1)	*	(M								&	0xf)	^
8 								((V	>>	1)	&	1)	*	((M	>>		4)	&	0xf)	^
9 								((V	>>	2)	&	1)	*	((M	>>		8)	&	0xf)	^
10 								((V	>>	3)	&	1)	*	((M	>>	12)	&	0xf)
11);
12 }
13
14 inline	int	I(int	i)	{	return	MxV(0x1248,	i);	}
15
16 void	sz16(int	alpha,	int	i,	int	*p)	{
17 				p[0]	=	(I(i	&	0xf)	<<	4)	|	I(i	>>	4);
18 				for	(int	d	=	1,	x	=	I(i	>>	4);	d	<	16;	d++)	{
19 								p[d]	=	p[0]	^	(x	<<	4);
20 								x	=	MxV(alpha,	x);
21 				}
22 }
23
24 int	main(int	argc,char	**argv)	{
25 				int	p[16];
26 				for	(int	i	=	0;	i	<	256;	i++)	{
27 								sz16(alpha,	i,	p);
28 								for	(int	d	=	0;	d	<	16;	d++)	{
29 												printf("%3d	",	p[d]);
30 								}
31 								printf("\n");
32 				}
33 }

(a) Code (b) plots of generated points

Fig. 8. (a) A self-contained code example to compute 256 16D points that are

pair-wise stratified in all 2D projections. (b) Plots to visualize the generated

points without\with Owen scrambling. The diagonal shows the implicit

matrices used to compute the points in the dimension of respective rows

and columns.

Apart from such specialized hacks and tricks, SZ sequences admit
a generic optimization via an “S–P–Z decomposition”:

P(𝑎) =
𝐼
𝑎−1

𝑎−2
. . .

©­­­«
ª®®®¬
P(𝐼)

𝐼
𝑎

𝑎2
. . .

©­­­«
ª®®®¬
. (41)

The middle Pascal factor can be evaluated using the fast diagonal
factoring introduced by Ahmed [2024], while the block-diagonal
factors are simply treated as sums of diagonal matrices, which
translate naturally to bit-shift-and-mask operations. This reduces
the time and space complexity from O(𝑚) for𝑚-bit precision to
O(log(𝑚)) for the middle 𝑃 factor and O(2𝑞 − 1) for the 𝑆 and 𝑍
ffactors—independent of numeric precision—which is especially sig-
nificant for 64-bit computations. An implementation is available in
our supplementary materials. We achieve 89%/77% memory savings
and 20×/15× speedups for the first 16/256 dimensions, respectively,
leading to up to 60% speedup over Sobol depending on scene spec-
ifications, as shown in Table 1. Further, although evaluating 2D
Sobol samples is indeed faster than high-dimensional SZ, our SZ-Z
sampler remains faster than ZSobol because ZSobol must shuffle

Table 1. Actual rendering times of the (top/bottom) pbrt-3/4 scenes in Fig. 6

for different samplers, relative to the independent sampler showing time in

seconds. The SZ-Z sampler consistently performs favorably, coming close

to the simple quasi-random sampler, but the relative speedup depends on

scene complexity, path depth, and integrator, which all determine the pro-

portion of time spent on sampling. For ZSobol in pbrt-3 we use the original
implementation of Ahmed and Wonka [2020] based on the PixelSampler
class, which differs slightly from the standard pbrt-4 implementation.

Scene Indpt Halton PdSbl Sobol ZSbl SZ-Z
Bdhha 88.5 1.14× 1.06× 1.70× 1.07× 1.06×
Chppr Ttn 138.5 1.09× 1.09× 1.14× 1.12× 1.03×
Sanmiguel 932.6 1.03× 1.03× 1.04× 1.04× 1.01×
Crnll Box 196.4 1.18× 1.19× 1.20× 1.49× 1.01×
Brclna Pvln 211.4 1.08× 1.07× 1.09× 1.18× 1.01×
Bistro Vspa 373.9 1.05× 1.04× 1.06× 1.11× 1.01×
Watercolor 1146.8 1.02× 1.02× 1.03× 1.06× 1.00×
Head 158.2 1.12× 1.10× 1.12× 1.26× 1.01×

the Z-indices of pixels for each 1D or 2D constituent separately,
whereas SZ requires this shuffling only once.

5.6 Coding Complexity

Even though the final implementation amounts to only a few lines
of code, implementing a low-discrepancy construction is relatively
challenging and prone to mistakes, and SZ sequences are no excep-
tion. Acknowledging this, we will make our code publicly available,
and aim to maintain libraries for C, Python, and other languages to
encourage adoption of these sequences. That said, we still encourage
readers to try implementing the sequences themselves, as doing so
can deepen their understanding of the underlying properties.

6 CONCLUSION

In this paper, we have enriched the sampling library with a novel
construction of binary-based low-discrepancy sequences that scale
flexibly with dimension, offering multiple degrees of freedom and
control to enable sampling solution architects to tailor sequences
to their needs. Originating as an experimental effort, our empirical
modeling led us close to the well-established constructions of Faure

ACM Trans. Graph., Vol. 44, No. 6, Article 206. Publication date: December 2025.

SZ Sequences: Binary-Constructed (0, 2𝑞)-Sequences • 206:13

and Niederreiter, with the primary difference that we replace ele-
mentary fields over (power-of-) prime bases with synthetic fields
built over binary matrices, enabling highly efficient computation.
More importantly, our model uniquely offers the capability of en-
sembling a high-dimensional LD sequence from low-dimensional
sub-sequences, a feature particularly desirable in graphics applica-
tions such as rendering, where the integration domain is largely
composed of 2D surfaces.

Our sequences are evidently superior to Halton’s for CG applica-
tions, and through multiple abstract and rendering tests, we demon-
strated that they benchmark competitively with respect to the well-
established Sobol sequences. We believe, however, that a deeper
analysis of the integrator-sampler interaction is needed before arriv-
ing at a final conclusion about the performance of these sequences.
We therefore expect this work to spark future research aiming at
analyzing, improving, and utilizing these sequences. Finally, we
relied mostly on empirical validation, which is sufficient for specific
instances, but an analytical proof is still missing for the generic
concept, which we hope to see in the near future.

ACKNOWLEDGMENTS

We thank all the anonymous reviewers for their insightful comments.
We are also grateful to Art Owen for the insightful discussion, and
particularly for highlighting the potential connection to Niederre-
iter’s construction. Beyond the Z|Z convention for distinguishing
left and right elements, the name ‘SZ’ was selected by the first au-
thor as a tribute to the city of Shenzhen, which he was visiting at
the time the idea was conceived.
This work was supported in parts by Guangdong S&T Program

(2024B01015004), NSFC (U21B2023, 62402323), ICFCRT (W2441020),
Shenzhen Science and Technology Program (KJZD20240903100022028,
KQTD20210811090044003, RCJC20200714114435012), and Scientific
Development Funds from Shenzhen University.

REFERENCES

Abdalla G. M. Ahmed. 2024. An Implementation Algorithm of 2D Sobol Sequence Fast,
Elegant, and Compact. In Eurographics Symposium on Rendering. The Eurographics
Association. https://doi.org/10.2312/sr.20241147

Abdalla G. M. Ahmed. 2025. Q-ART Owen Scrambling. In Computer Graphics and Visual
Computing (CGVC). The Eurographics Association. https://doi.org/10.2312/cgvc.
20251215

Abdalla G. M. Ahmed, Hélène Perrier, David Coeurjolly, Victor Ostromoukhov, Jianwei
Guo, Dong-Ming Yan, Hui Huang, and Oliver Deussen. 2016. Low-Discrepancy
Blue-Noise Sampling. ACM Trans. Graph. 35, 6, Article 247 (Nov. 2016), 13 pages.
https://doi.org/10.1145/2980179.2980218

Abdalla G. M. Ahmed, Mikhail Skopenkov, Markus Hadwiger, and Peter Wonka. 2023.
Analysis and Synthesis of Digital Dyadic Sequences. ACM Trans. Graph. 42, 6, Article
218 (Dec. 2023), 17 pages. https://doi.org/10.1145/3618308

Abdalla G. M. Ahmed and Peter Wonka. 2020. Screen-space blue-noise diffusion of
monte carlo sampling error via hierarchical ordering of pixels. ACM Trans. Graph.
39, 6, Article 244 (Nov. 2020), 15 pages. https://doi.org/10.1145/3414685.3417881

Abdalla G. M. Ahmed and Peter Wonka. 2021. Optimizing Dyadic Nets. ACM Trans.
Graph. 40, 4, Article 141 (jul 2021), 17 pages. https://doi.org/10.1145/3450626.3459880

Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller, Magnus Oskarsson, Kalle
Åström, and Mark D. Fairchild. 2020. FLIP: A Difference Evaluator for Alternating
Images. Proceedings of the ACM on Computer Graphics and Interactive Techniques 3,
2 (2020), 15:1–15:23. https://doi.org/10.1145/3406183

Pontus Andersson, Jim Nilsson, Peter Shirley, and Tomas Akenine-Möller. 2021. Visual-
izing Errors in Rendered High Dynamic Range Images. In Eurographics Short Papers.
https://doi.org/10.2312/egs.20211015

Paul Bratley, Bennett L. Fox, and Harald Niederreiter. 1992. Implementation and Tests
of Low-Discrepancy Sequences. ACM Trans. Model. Comput. Simul. 2, 3 (July 1992),
195–213. https://doi.org/10.1145/146382.146385

Per Christensen, Andrew Kensler, and Charlie Kilpatrick. 2018. Progressive Multi-
Jittered Sample Sequences. In Computer Graphics Forum, Vol. 37. Wiley Online
Library, 21–33.

Robert L. Cook, Thomas Porter, and Loren Carpenter. 1984. Distributed Ray Tracing.
In Proceedings of the 11th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’84). ACM, 137–145. https://doi.org/10.1145/800031.808590

Bastien Doignies, David Coeurjolly, Nicolas Bonneel, Julie Digne, Jean-Claude Iehl, and
Victor Ostromoukhov. 2024. Differentiable Owen Scrambling. ACM Trans. Graph.
43, 6, Article 255 (Nov. 2024), 12 pages. https://doi.org/10.1145/3687764

Henri Faure. 1982. Discrépance de Suites Associées à un Système de Numération (en
Dimension s). Acta Arithmetica 41, 4 (1982), 337–351. http://eudml.org/doc/205851

Henri Faure and Shu Tezuka. 2002. Another Random Scrambling of Digital (t,s)-
Sequences. In Monte Carlo and Quasi-Monte Carlo Methods 2000. Springer Berlin
Heidelberg, 242–256.

Andrew S. Glassner. 1994. Principles of Digital Image Synthesis. Morgan Kaufmann
Publishers Inc.

Leonhard Grünschloß, Matthias Raab, and Alexander Keller. 2012. Enumerating Quasi-
Monte Carlo Point Sequences in Elementary Intervals. In Monte Carlo and Quasi-
Monte Carlo Methods 2010. Springer Berlin Heidelberg, 399–408.

John H Halton. 1960. On The Efficiency Of Certain Quasi-Random Sequences Of Points
In Evaluating Multi-Dimensional Integrals. Numer. Math. 2 (1960), 84–90.

Andrew Helmer, Per Christensen, and Andrew Kensler. 2021. Stochastic Generation of
(t, s) Sample Sequences. In Eurographics Symposium on Rendering - DL-only Track.
The Eurographics Association. https://doi.org/10.2312/sr.20211287

OEIS Foundation Inc. 2015. Sequence A258745: Order of the general affine group
AGL(n,2). The Online Encyclopedia of Integer Sequences. https://oeis.org/A258745
Accessed: 2025-01-18.

Wojciech Jarosz, Afnan Enayet, AndrewKensler, Charlie Kilpatrick, and Per Christensen.
2019. Orthogonal Array Sampling for Monte Carlo Rendering. In Computer Graphics
Forum, Vol. 38. Wiley Online Library, 135–147.

Stephen Joe and Frances Y. Kuo. 2008. Constructing Sobol Sequences with Better
Two-Dimensional Projections. SIAM J. Sci. Comput. 30, 5 (Aug. 2008), 2635–2654.
https://doi.org/10.1137/070709359

Thomas Kollig and Alexander Keller. 2002. Efficient Multidimensional Sampling. In
Computer Graphics Forum, Vol. 21. 557–563.

Lauwerens Kuipers and Harald Niederreiter. 1974. Uniform Distribution of Sequences.
John Wiley & Sons. http://opac.inria.fr/record=b1083239 A Wiley-Interscience
publication..

DonMitchell. 1992. Ray Tracing and Irregularities of Distribution. In Third Eurographics
Workshop on Rendering Proceedings. 61–69.

Harald Niederreiter. 1987. Point Sets and Sequences with Small Discrepancy. Monat-
shefte für Mathematik 104, 4 (1987), 273–337.

Harald Niederreiter. 1992. Random Number Generation and Quasi-Monte Carlo Methods.
SIAM.

Victor Ostromoukhov, Nicolas Bonneel, David Coeurjolly, and Jean-Claude Iehl. 2024.
Quad-Optimized Low-Discrepancy Sequences. In ACM SIGGRAPH 2024 Conference
Papers (Denver, CO, USA) (SIGGRAPH ’24). ACM, Article 72, 9 pages. https://doi.
org/10.1145/3641519.3657431

Art B. Owen. 1995. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences. In Monte
Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Springer New York,
299–317.

Loïs Paulin, David Coeurjolly, Jean-Claude Iehl, Nicolas Bonneel, Alexander Keller, and
Victor Ostromoukhov. 2021. Cascaded Sobol’ Sampling. ACM Trans. Graph. 40, 6,
Article 275 (dec 2021), 13 pages. https://doi.org/10.1145/3478513.3480482

Hélène Perrier, David Coeurjolly, Feng Xie, Matt Pharr, Pat Hanrahan, and Victor
Ostromoukhov. 2018. Sequences with Low-Discrepancy Blue-Noise 2-D Projections.
Computer Graphics Forum (Proceedings of Eurographics) 37, 2 (2018), 339–353.

Matt Pharr. 2019. Efficient Generation of Points that Satisfy Two-Dimensional Elemen-
tary Intervals. Journal of Computer Graphics Techniques (JCGT) 8, 1 (27 February
2019), 56–68. http://jcgt.org/published/0008/01/04/

Matt Pharr and Greg Humphreys. 2004. Physically-Based Rendering: from Theory to
Implementation (1st ed.). Morgan Kaufmann Publishers Inc.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2023. Physically Based Rendering:
From Theory to Implementation (4th ed.). MIT Press.

Il’ya Meerovich Sobol’. 1967. On the Distribution of Points in a Cube and the Approxi-
mate Evaluation of Integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi
Fiziki 7, 4 (1967), 784–802.

Shu Tezuka. 1994. A Generalization of Faure Sequences and its Efficient Implementation.
Technical Report, IBM Research, Tokyo Research Laboratory (1994). https://doi.org/
10.13140/RG.2.2.16748.16003

J.G. van der Corput. 1935. Verteilungsfunktionen. Proceedings of the Nederlandse
Akademie van Wetenschappen 38 (1935), 813–821.

Henry S. Warren. 2012. Hacker’s Delight (2nd ed.). Addison-Wesley Professional.

ACM Trans. Graph., Vol. 44, No. 6, Article 206. Publication date: December 2025.

https://doi.org/10.2312/sr.20241147
https://doi.org/10.2312/cgvc.20251215
https://doi.org/10.2312/cgvc.20251215
https://doi.org/10.1145/2980179.2980218
https://doi.org/10.1145/3618308
https://doi.org/10.1145/3414685.3417881
https://doi.org/10.1145/3450626.3459880
https://doi.org/10.1145/3406183
https://doi.org/10.2312/egs.20211015
https://doi.org/10.1145/146382.146385
https://doi.org/10.1145/800031.808590
https://doi.org/10.1145/3687764
http://eudml.org/doc/205851
https://doi.org/10.2312/sr.20211287
https://oeis.org/A258745
https://doi.org/10.1137/070709359
http://opac.inria.fr/record=b1083239
https://doi.org/10.1145/3641519.3657431
https://doi.org/10.1145/3641519.3657431
https://doi.org/10.1145/3478513.3480482
http://jcgt.org/published/0008/01/04/
https://doi.org/10.13140/RG.2.2.16748.16003
https://doi.org/10.13140/RG.2.2.16748.16003

206:14 • Abdalla G. M. Ahmed, Matt Pharr, Victor Ostromoukhov, and Hui Huang

A NESTING AND ENSEMBLING WALKTHROUGH

(1) Starting with initial base-4 alphabet:
Σ2 = (𝑠0, 𝑠1, 𝑠2, 𝑠3) = (, , ,) (A.1)

(2) Embed each symbol in a 4×4 base-16 one by placing the squared
symbol diagonally on a 2×2-block matrix:

Σ⟨2⟩ = (⟨𝑠𝑖 ⟩)3𝑖=0 =
(()2 , ()2 , ()2 , ()2) = (, , ,)

(A.2)
Note that

(
𝑠22, 𝑠

2
3

)
= (𝑠3, 𝑠2), hence ⟨𝑠2⟩ contains 𝑠3 blocks and

vice versa.
(3) Find a 4×4 “alpha”matrix blockwhose 15 distinct powers include

all non-zero elements of Σ⟨2⟩ :(
()𝑖

)14
𝑖=0

= (, , , , , , , , , , , , , ,) .
(A.3)

(4) Add the zero symbol to the set of powers, and group the com-
pleted alphabet by offset from the embedded Σ⟨2⟩ symbols:

Σ4 =
©­­­«

(, , ,) ,
(, , ,) ,
(, , ,) ,
(, , ,)

ª®®®¬
=

©­­­«

(, , ,) + ,
(, , ,) + ,
(, , ,) + ,
(, , ,) +

ª®®®¬
. (A.4)

This grouping is unique, up to ordering. That is, the four groups
are disjoint. Algorithm 3 achieves this grouping in logarithmic
O(𝑞) steps instead of linear O(2𝑞).

(5) Generate the Pascal matrix for each block symbol in Eq. (A.4),
for example:

P() =
©­­­­­­«
𝑝row,col :

(
col
row

)
︸︷︷︸
mod 2

()col−row
ª®®®®®®¬
=

0 1 2 3 4 5 6 7
0 2 4 6

0 1 4 5
0 4

0 1 2 3
0 2

0 1
0

1

. (A.5)

As per Eq. (A.3), all blocks are powers of 𝛼 = , hence their
powers cycle through the same alphabet; for example,

()col−row =
(
()6

)col−row
= ()6(col−row) . (A.6)

The cycling order, however, varies by the block exponent in
Eq. (A.3), leading to different Pascal matrices.

(6) Addition of symbols translates into multiplication of their Pascal
matrices, Eq. (34), and multiplication by an upper-triangular
matrix on the right generates the same points, only shuffling
their order. Therefore, Eq. (A.4) leads to four bands

P(Σ4) =

©­­­­­­­­­­«

©­­«
, , ,

ª®®¬ ︸ ︷︷
 ︸

ge
ne
ra
te

×
©­­
«

, , ,
ª®®
¬ ︸ ︷︷

 ︸
sh
uffl

e

ª®®®®®®®®®®¬

(A.7)

of identical 4D sequences shuffled in different orders, as reflected
in the replicated four red-and-cyan 4D blocks in Fig 1(b).

(7) For each band, multiply the four generator matrices from left

respectively by
((

𝐼 𝑠𝑖
0 𝐼

))3
𝑖=0

=
(

, , ,
)
:

©­­­­­­­­­
«

©­­
«

, , ,
ª®®¬

×
©­«

, , ,
ª®¬

ª®®®®®®®®®
¬

, (A.8)

to restore the respective base-4 Pascal matrices:

©­­­­­­­­­«

©­
«

, , ,
ª®
¬

×
©­«

, , ,
ª®¬

ª®®®®®®®®®
¬

, (A.9)

which are identical to those in Eq (23). The multiplied factors
expand into 4×4-block-diagonal matrices, with all-invertible
blocks, hence constitute base-16-rank-preserving Tezuka scram-
blings.

(8) By a similar reasoning we can transform the four base-4 Pas-
cal matrices into shuffled two-band base-2 Pascals. The initial
alphabet is

Σ1 = (,) , (A.10)
which is already embedded in (𝑠0 = ()2 , 𝑠1 = ()2), hence we
may proceed to group the base-4 alphabet as

Σ2 = ((,) + , (,) +) (A.11)
from which follows that the four base-4 Pascals in Eq. (A.9) may,
in turn, be refactored into two bands

©­­
«

,
ª®®
¬︸ ︷︷ ︸

generate

×
©­­
«

,
ª®®
¬︸ ︷︷ ︸

shuffle

(A.12)

of the same 2D sequence shuffled differently. We then multiply
the two generators from left respectively by (,) to restore the
classic dyadic (0, 2)-sequence of Sobol and Faure. Hence, the
final set of 16D generator matrices becomes

©­­­­­­­­­«

©­«
©­«

,
ª®¬
× ©­«

,
ª®¬
ª®¬

×
©­«

, , ,
ª®¬

ª®®®®®®®®®
¬

, (A.13)

which expands identically to the set of matrices in Fig 1(b).
(9) The process extends analogously to arbitrary large dimensions.

In each extension, the existing 2𝑞 matrices are multiplied, in
a Cartesian-product sense, by 2𝑞 base-22𝑞 Pascal matrices that
shuffle the same 2𝑞-dimensional sequence in different orders.

ACM Trans. Graph., Vol. 44, No. 6, Article 206. Publication date: December 2025.

	Abstract
	1 Introduction
	2 Technical Background and Related Work
	2.1 Discrepancy
	2.2 Radix-Based Constructions
	2.3 (t, m, s)-Nets and (t, s)-Sequences
	2.4 Scrambling and Shuffling of LD Constructions
	2.5 LD Sampling in Computer Graphics

	3 Exploration
	3.1 Initial Findings
	3.2 Refinement

	4 SZ Sequences
	4.1 Alphabets
	4.2 Randomization
	4.3 Nesting
	4.4 Ensembling

	5 Results and Applications
	5.1 Numerical Integration
	5.2 Rendering
	5.3 Discrepancy
	5.4 Frequency Spectra
	5.5 Time and Space Complexity
	5.6 Coding Complexity

	6 Conclusion
	References
	A Nesting and Ensembling Walkthrough

