
Improved Stochastic Texture Filtering Through Sample Reuse

BARTLOMIEJ WRONSKI, NVIDIA, USA
MATT PHARR, NVIDIA, USA
TOMAS AKENINE-MÖLLER, NVIDIA, Sweden

ground truth STF STF denoised our our denoised
full image PSNR(↑)/FLIP(↓): 30.3 / 0.042 35.9 / 0.030 42.6 / 0.021 48.1 / 0.017

bi
li
ne

ar
bi
cu

bi
c
B
-s
pl
in
e

PSNR(↑)/FLIP(↓): 28.3 / 0.054 33.8 / 0.038 38.2 / 0.032 44.7 / 0.020

Fig. 1. We present an improved stochastic texture filtering (STF) method with no additional texture lookup
cost compared to standard STF. Above, the images from our method have between 9.9 and 12.3 dB higher
PSNR and lower FLIP errors for both bilinear and bicubic B-spline filtering compared to standard STF. DLSS
was used for denoising.

Stochastic texture filtering (STF) has re-emerged as a technique that can bring down the cost of texture
filtering of advanced texture compression methods, e.g., neural texture compression. However, during texture
magnification, the swapped order of filtering and shading with STF can result in aliasing. The inability to
smoothly interpolate material properties stored in textures, such as surface normals, leads to potentially
undesirable appearance changes. We present a novel method to improve the quality of stochastically-filtered
magnified textures and reduce the image difference compared to traditional texture filtering. When textures
are magnified, nearby pixels filter similar sets of texels and we introduce techniques for sharing texel values
among pixels with only a small increase in cost (0.04–0.14 ms per frame). We propose an improvement to
weighted importance sampling that guarantees that our method never increases error beyond single-sample
stochastic texture filtering. Under high magnification, our method has >10 dB higher PSNR than single-sample
STF. Our results show greatly improved image quality both with and without spatiotemporal denoising.

CCS Concepts: • Computing methodologies→ Texturing; Image processing; Image compression.

Additional Key Words and Phrases: stochastic texture filtering, importance sampling, wave intrinsics.

Authors’ Contact Information: Bartlomiej Wronski, NVIDIA, Brooklyn, USA, bwronski@nvidia.com; Matt Pharr, NVIDIA,
San Francisco, USA, matt@pharr.org; Tomas Akenine-Möller, NVIDIA, Lund, Sweden.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2577-6193/2025/5-ART14
https://doi.org/10.1145/3728292

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 14. Publication date: May 2025.

HTTPS://ORCID.ORG/0009-0005-0806-2307
HTTPS://ORCID.ORG/0000-0002-0566-8291
HTTPS://ORCID.ORG/0000-0001-6226-3170
https://orcid.org/0009-0005-0806-2307
https://orcid.org/0000-0002-0566-8291
https://orcid.org/0000-0001-6226-3170
https://doi.org/10.1145/3728292


14:2 Bartlomiej Wronski, Matt Pharr, and Tomas Akenine-Möller

ACM Reference Format:
Bartlomiej Wronski, Matt Pharr, and Tomas Akenine-Möller. 2025. Improved Stochastic Texture Filtering
Through Sample Reuse. Proc. ACM Comput. Graph. Interact. Tech. 8, 1, Article 14 (May 2025), 19 pages.
https://doi.org/10.1145/3728292

1 Introduction
The gap between computation and memory bandwidth in microprocessors has been increasing for
nearly 50 years [Dongarra 2022]. GPUs are not immune to this trend: over the past 20 years, the
computation available on GPUs (measured by FP32 GFLOPS) has increased by a factor of ∼2, 750×,
while the peak off-chip memory bandwidth has increased by a factor of just ∼60×.1 If specialized
tensor operations in hardware is included, the growth in available computation is up to an order of
magnitude greater, depending on the precision. This trend has motivated the development of new
compression techniques that trade off increased computation to save bandwidth; examples include
neural texture compression (NTC) [Vaidyanathan et al. 2023] and NeuralVDB [Kim et al. 2024].
However, these techniques are not compatible with current GPU texture filtering hardware and
may be too expensive even for a simple bilinear filter decoding 2× 2 texels. Building on earlier work
by Hofmann et al. [Hofmann et al. 2021], Vaidyanathan et al. [Vaidyanathan et al. 2023], and others,
Pharr et al. [Pharr et al. 2024] thus introduced a family of Monte Carlo stochastic texture filtering
(STF) techniques to approximate the effects of traditional texture filtering without increasing the
texture sampling cost beyond a single sample.

STF has the additional advantage that it allows efficient implementation of filtering after shading
(FAS), where the antialiasing filter is applied to the final shaded value rather than the texture inputs
to a shader [Pharr et al. 2024]. When the shading function is linear or an affine combination of
the input texture values, both filtering before shading (FBS) and FAS converge to the same result.
When it is non-affine, results differ: FAS is generally more accurate than FBS when textures are
minimized, but it has a number of disadvantages when textures are magnified [Pharr et al. 2024,
Section 3.2]:

• FAS can introduce aliasing under magnification.
• FAS is unable to reproduce smooth interpolation of some properties (e.g., surface curvature).
• FAS may produce results different than those intended by the author of the art assets.

Further, spatiotemporal reconstruction techniques like TAA [Karis 2014; Yang et al. 2020] and
DLSS [Liu 2022] may fail to converge and produce residual noise when used to integrate STF
samples [Pharr et al. 2024, Section 6].

In this work, we address these limitations and improve the quality of stochastic texture magnifica-
tion without increasing the cost beyond a single texture lookup and without affecting the favorable
properties of FAS for minification. We base our approach on a simple insight: under magnification,
adjacent screen pixels tend to filter the same set of texels. Thus, if each pixel continues to take a
single STF texel sample and shares this sample with nearby pixels, then each pixel may be able to
compute a more accurate estimate of the true filtered value. This sharing can be performed effi-
ciently by taking advantage of the SIMT/SIMD nature of GPU execution to communicate between
shader threads without any VRAM memory traffic. By averaging multiple texel values, our method
performs some filtering before shading. Intuitively, it can be seen as a hybrid between filtering
after shading and filtering before shading.

Our contributions include:
1We compare the NVIDIA GeForce FX 5800 Ultra, 30 FP32 GFLOPS, 16 GB/s bandwidth, released March 2003, to the NVIDIA
4090 RTX, 82.6 TFLOPS, 1.01 TB/s bandwidth, released October 2022; GPUs from other manufacturers share similar relative
ratios.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 14. Publication date: May 2025.

https://doi.org/10.1145/3728292


Improved Stochastic Texture Filtering Through Sample Reuse 14:3

• An algorithm for efficient STF sample reuse and sharing using wave intrinsics (Section 4)
including practical implementation details (Section 4.5).

• An in-depth analysis of the error of the traditional STF estimator (Section 3) including the
impact of filtering after shading of non-affine rendering functions. We further explain in the
supplementary material (Section S-2) the relationship between the estimator variance and
the bias introduced by reordering filtering and shading.

• A new Monte Carlo estimator based on weighted importance sampling with a lower error
than previous estimators when used for stochastic texture filtering (Section 4.2).

• An algorithm that generates optimized sharing footprints introducing variation, in which
pixels share texel values with each other and distribute error as blue noise in the rendered
images (Section 4.3).

• An algorithm to generate custom blue noise patterns optimized to account for this sharing
(Section 4.4).

Under magnification, these techniques provide much better image quality than traditional STF,
both visually and using error metrics; see Figure 1. We validate our claims and analyze results
with a number of Monte Carlo estimators, different pseudo-random sequences and using different
spatiotemporal denoisers in Section 5.

2 Background and Previous Work
Before introducing our algorithm, we first provide relevant background on texture filtering, Monte
Carlo sampling, and the GPU quad and wave intrinsics we use for efficient communication between
nearby pixels.

2.1 Texture Filtering and Representations
A texture 𝑡 (𝑢, 𝑣) is defined by a set of texels T𝑢𝑖 ,𝑣𝑖 defined at integer coordinates (𝑢𝑖 , 𝑣𝑖 ) on a grid,
scaled by translated Dirac delta functions:2

𝑡 (𝑢, 𝑣) =
𝑛∑︁
𝑖

𝛿 (𝑢 − 𝑢𝑖 )𝛿 (𝑣 − 𝑣𝑖 ) T𝑢𝑖 ,𝑣𝑖 . (1)

With this notation, 𝑛 is the total number of texels in the texture. To construct a continuous texture
function, it is necessary to specify a reconstruction filter 𝑓r and convolve it with the texture function:

𝑡r (𝑢, 𝑣) = 𝑡 ⊗ 𝑓r =

∫∫
𝑡 (𝑢′, 𝑣 ′) 𝑓r (𝑢 − 𝑢′, 𝑣 − 𝑣 ′) d𝑢′ d𝑣 ′, (2)

where 𝑡 ⊗ 𝑓r is a convolution. In turn, the filtered value at a point (𝑢, 𝑣) ∈ R2 can be written as a
sum of weighted texel values. Given a (𝑢, 𝑣) lookup point, we will generally write Equation 2 as

𝑡r (𝑢, 𝑣) =
∑︁
𝑖

𝑓r (𝑢 − 𝑢𝑖 , 𝑣 − 𝑣𝑖 ) T𝑢𝑖 ,𝑣𝑖 . (3)

The bilinear (tent) and bicubic filters are commonly used for texture reconstruction. Given such
a filter with limited spatial extent, these sums only need to be over a few weighted texels.

2Without loss of generality, we focus on filtering 2D textures and use this assumption throughout the text, but the described
techniques apply to any texture dimensionality.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 14. Publication date: May 2025.



14:4 Bartlomiej Wronski, Matt Pharr, and Tomas Akenine-Möller

2.2 Monte Carlo Estimators
The standard importance sampling Monte Carlo (MC) estimator samples a random variable 𝑋 from
a probability distribution function (PDF) 𝑝 , 𝑋 ∼ 𝑝 and gives the estimate

𝐹 =
𝑓 (𝑋 )
𝑝 (𝑋 ) ≈

∫
𝑓 (𝑥) d𝑥 . (4)

This estimator is unbiased if 𝑝 (𝑥) > 0 everywhere when 𝑓 (𝑥) > 0 [Pharr et al. 2023].
A continuous Monte Carlo integral estimator like Equation 4 can be converted to apply to a

discrete sum by introducing Dirac delta functions centered at the points where the sum is being
evaluated. PDFs are then comprised of corresponding Dirac deltas multiplied by discrete probability
mass functions (PMFs) that sum to 1. Such an approach was effectively taken in previous applications
of STF, where one sample was taken from the sum in Equation 3 based on a PMF proportional to
the filter weight. In turn, the importance sampling Monte Carlo estimator approximates the filtered
value 𝑡 (𝑢, 𝑣) with a single unweighted texel value; we will call this approach one-tap STF in the
following. See Section S-1 for a derivation showing how the continuous estimator of Equation 4
was applied for one-tap STF.

The Monte Carlo literature offers extensive analysis of convergence of not only estimators, but
also different sources of randomness, such as different pseudo- and quasi-random sequences. Most
of this analysis focuses on convergence properties with sample counts growing toward infinity.
In contrast, real-time rendering uses spatiotemporal filtering [Karis 2014; Yang et al. 2020] and
can realistically average only a small number of past samples, sometimes combined with spatial
filtering [Liu 2022]. Therefore, real-time rendering focuses on minimizing the perceptual error
for a minimal number of samples, assuming small radius spatial filtering and an exponentially
moving average temporal filter. The most common randomness sources in real-time rendering are
blue noise dithering masks [Georgiev and Fajardo 2016], such as the spatiotemporal blue noise
masks [Wolfe et al. 2022] used by Pharr et al. [Pharr et al. 2023]. Wolfe et al. [Wolfe et al. 2022]
proposed two different algorithms for generating those masks—a scalar version based on the void
and cluster algorithm, and a vector version based on simulated annealing. In Section 4.4, we discuss
the impact of those masks on the quality of our algorithm as well as compare them with the most
recent spatiotemporal blue noise mask generation advancements [Donnelly et al. 2024].

2.3 Wave Intrinsics

16 17
24 25

0 1
8 9

2 3
10 11

4 5
12 13

6 7
14 15

18 19
26 27

20 21
28 29

22 23
30 31

Fig. 2. An example of a 32 lane wave: eight 2 × 2
quads configured as 8× 4 pixels. The numbers are
lane ids, configured for linear row ordering. Each
pixel corresponds to a lane in the wave, and it
can access a value of the other wave lanes using
WaveReadLaneAt().

We make extensive use of wave intrinsics to share
samples between pixels; they were introduced in Di-
rectX HLSL Shader Model 6.0 [Microsoft 2021]. Nor-
mally in shader programming, only a single thread
of execution is exposed, meaning that each thread
does not know what its neighbors are doing. Wave
intrinsics allow threads to communicate. HLSL 6.0
uses the term lane for a single thread of execution,
and wave, sometimes called a warp, for a set of lanes
that are executed together in parallel. Wave sizes
are hardware dependent and not guaranteed by the
DirectX specification, but common sizes are 8, 16, 32,
and 64 lanes. All our evaluation (Section 5) is done
on NVIDIA hardware, where recent GPUs have a wave size of 32; our work generalizes to arbitrary
wave sizes. A lane can access a value from any lane in its wave using WaveReadLaneAt(value,
laneId); see Figure 2. Wave intrinsics are an attractive method for inter-lane communication since

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 14. Publication date: May 2025.



Improved Stochastic Texture Filtering Through Sample Reuse 14:5

they are typically implemented as swap or shuffle instructions within a wave [Microsoft 2021], and
thus cost only one instruction with no memory bandwidth impact. Previous work exploited pixel
shader quad derivatives to perform in-place screen-space filtering (such as bilateral or convolution
filters) [McGuire et al. 2012; Penner 2011]. We build upon those ideas using modern wave intrinsics
and generalize beyond screen-space effects.

X
Y

X
D DY

Fig. 3. Quads with the current pixel
marked with a circle. The values accessed
by QuadReadAcrossX/Y/Diagonal() are
marked X, Y, and D.

Under magnification, adjacent screen pixels sample ad-
jacent source texels and we aim to share samples between
adjacent pixels to improve filtering quality. The zero mem-
ory cost of wave intrinsics is highly beneficial for this
purpose. Before we describe and motivate our approach in
detail, we discuss how wave lanes are mapped to screen
pixels. We will show in Section 4.3 that this mapping af-
fects the possible sample sharing configurations and fil-
tering quality.
For compute shaders, it is the programmer’s responsi-

bility to map the dispatch indices (and, as a consequence,
the wave lane indices) to processed elements, such as pixels, vertices, or rays. Figure 2 organizes 32
lanes as 8 × 4 lanes but other configurations such as 16 × 2 lanes are possible.

With pixel shaders, there is only a guarantee of 2 × 2 quad granularity with the upper left pixel
of each quad located at even (𝑥,𝑦) coordinates on the screen. Two quads are shown in Figure 3.
HLSL provides special helper functions for quad communication. For a single pixel in a 2 × 2 quad,
one can access computed values in the other pixels in the quad using the QuadReadAcrossX(),
QuadReadAcrossY(), and QuadReadAcrossDiagonal() functions (Figure 3). It is still possible to
access other wave lanes using the WaveReadLaneAt() function in pixel shaders, but they can map
to arbitrary screen pixels, inactive lanes, and depend on the rasterizer behavior.

3 Error Analysis of Stochastic Texture Filtering
We observe that the error and noise characteristics of STF do not resemble traditional Monte Carlo
rendering noise. A single sample of the rendering equation MC integral is typically extremely
noisy, even given a smooth signal. For this reason, most of the Monte Carlo literature analyzes the
average error and the error convergence. By comparison, many pixels produced by STF are not
noisy, even without temporal integration. See Figure 1 as an example. Aiming to improve STF, we
analyze the error of a single STF sample and show that it is not only bounded, but is zero in many
common cases.

We begin by observing that all valid texture filters have weights that sum to one. Without loss of
generality, we assume a filter with nonnegative weights.3 The one-tap STF importance sampling
estimator effectively selects one of the samples of the texture where the texture filter is nonzero
(one element of the sum in Equation 3). To analyze the maximum error of a single sample, we can
ignore the sampling probabilities and look at the individual selected samples. The STF estimator
has a geometric interpretation—the filtered value lies inside the convex hull of texel values, and
STF selects one of the texels. The one-tap STF estimator is thus guaranteed to never leave the range
of the contributing texels’ values. This property is crucial for texture filtering, as textures often
encode physical properties with a defined valid range. The highest error case occurs when the
selected texel differs the most from the filtered value, which can be arbitrarily close to another texel.

3A similar analysis applies to filters with negative lobes sampled with positivization [Pharr et al. 2024], rescaling the convex
hull bounds.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 14. Publication date: May 2025.



14:6 Bartlomiej Wronski, Matt Pharr, and Tomas Akenine-Möller

In other words, the maximum error of any interpolating texture filter with nonnegative weights is

max
𝑖

T𝑢𝑖 ,𝑣𝑖 − min
𝑖

T𝑢𝑖 ,𝑣𝑖 , (5)

with 𝑖 ranging over the contributing texels.
From Equation 5 and the geometrical interpolation interpretation, it is clear that when all filtered

texel values are the same, the one-tap STF estimator error is zero. Natural and computer-generated
images have a low-frequency spectral bias [Reinhard et al. 2001] and adjacent texel values often
change slowly. While this is not the case for all scenes, many rendering texture assets contain large
flat and low-frequency regions. In those regions, the STF estimator error is close or equal to zero.

Given the low error and favorable properties of the existing STF estimator, we set the following
goals for the improved estimator:
(1) It should not produce any error where the one-tap STF estimator yields zero error.
(2) It should not increase the error in common low-frequency regions.
(3) It should reduce the error and variance in high-frequency regions, e.g., edges, where the

maximum and minimum local values differ significantly.
To achieve properties 1 and 2, we argue that a texture filtering estimator must produce results
within the convex hull of the texel values. In Section 5.1, we show how violating those requirements
can lead to poor image quality and introduction of new errors as compared to one-tap STF.

4 A Stochastic Texture Filtering Algorithm with Sample Reuse
In this section, we present our entire algorithm for STF with texel reuse across neighboring pixels.

4.1 Evaluation of Existing Estimators
With our approach, each lane starts by sampling a single texel according to its texture filter, just
like one-tap STF. After sample sharing, each lane has 𝑛 sampled texels 𝑥𝑖 , each drawn from a PMF
𝑝𝑖 corresponding to a distinct lane’s texture filter. Our task is to compute an estimate of the texture
filtering Equation 2 using these samples. We start by considering the use of standard MC estimators.

The standard importance sampling estimator computes the filtered value as the weighted texel
values divided by the probabilities 𝑝𝑖 of sampling each 𝑥𝑖 :

1
𝑛

𝑛∑︁
𝑖

𝑓 (𝑥𝑖 )
𝑝𝑖 (𝑥𝑖 )

. (6)

Although importance sampling requires that 𝑝𝑖 > 0 whenever 𝑓 > 0; this may not be the case with
sample sharing since other lanes’ filters (and thus PMFs), generally differ from the current lane’s. If
the importance sampling estimator is still used, the error may be unbounded. Further, even if a PMF
𝑝𝑖 is valid, the estimator may still produce arbitrarily high error—in the context of STF, consider a
pixel where the filter weight for a texel T𝑢𝑖 ,𝑣𝑖 is very small; if it samples that texel and shares it
with a neighboring pixel where the filter weight is much larger, the ratio 𝑓 /𝑝 may be arbitrarily
large, leading to high variance. This is illustrated in Figure 4.

One way to ensure that the PMFs are valid is by using defensive importance sampling, where for
example a constant PMF over the entire domain is mixed with the regular sampling PMF [Hesterberg
1995]. However, we have found that this may lead to pixels sometimes having zero texels that are
inside their own filter, making this approach unsuitable.Multiple importance sampling (MIS) [Veach
and Guibas 1995] provides an estimator that reduces the variance when some PMFs are a better
match to the function than others and further requires that only one of the PMFs be nonzero when
𝑓 > 0. The MIS balance heuristic (and Veach’s other heuristics) have the disadvantage of 𝑛2 PMF

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 14. Publication date: May 2025.



Improved Stochastic Texture Filtering Through Sample Reuse 14:7

evaluations. This cost can be noticeable when sharing samples across multiple pixels. It can be
avoided with Bitterli’s pairwise MIS, which only requires 2𝑛 PMF evaluations [Bitterli 2022].

1D Position

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
ab

il
it

y

t0 t1 t2 t3

f0 ≈ 0.99

p1 ≈ 0.05

pixel size

texel size

p0

p1

Fig. 4. Reconstruction filters for two ad-
jacent pixels in 1D. Texel locations are on
the 𝑥-axis. When pixel 1 samples texel
𝑡1 from the distribution 𝑝1 according to
its texture reconstruction filter and then
shares it with pixel 0, the standard MC
importance sampling estimator weights
this texel 𝑓0/𝑝1 ≈ 20 causing a variance
spike, even for constant filtered signals.

We have also considered a regression estimator that is
based on computing weights for a control variate based on
the sample values [Owen 2013, Equation 9.11]. It is:

1
𝑛

𝑛∑︁
𝑖

𝑓 (𝑥𝑖 )
𝑝𝑖 (𝑥𝑖 )

− 𝛽

(
𝑤𝑖 (𝑥𝑖 )
𝑝𝑖 (𝑥𝑖 )

− 1
)
, (7)

where𝑤𝑖 (𝑥𝑖 ) is the filter weight for texel 𝑥𝑖 and

𝛽 =

∑𝑛
𝑖 (𝑤𝑖 (𝑥𝑖 ) − 𝑤̄) 𝑓 (𝑥𝑖 )𝑤𝑖 (𝑥𝑖 )∑𝑛

𝑖 (𝑤𝑖 (𝑥𝑖 ) − 𝑤̄)2 , (8)

with 𝑤̄ = (1/𝑛)∑𝑛
𝑖 𝑤𝑖 (𝑥𝑖 ).

One problem with all the approaches in this section is that
they do not fulfill the first two goals identified in Section 3
and may yield results outside the convex hull of texel values.
One way to work around this issue is to clamp the filtered
texture value to lie withing the bounds of texel values used.
This introduces bias but significantly reduces the error as
we show in our evaluation (Section 5.1).

4.2 Our Estimator
Weighted importance sampling (WIS) estimators (also known
as self-normalized importance sampling) provide an alterna-

tive that provide results bounded by the texel values.WIS beganwith the “weighted uniform” estima-
tor, suggested by Handscomb [Handscomb 1964] and later analyzed by Powell and Swann [Powell
and Swann 1966]. Spanier [Spanier 1979] suggested and analyzed two successive generalizations,
leading to sampling from one PDF 𝑥𝑖 ∼ 𝑝1 and then reweighting using a second:4∑𝑛

𝑖 𝑓 (𝑥𝑖 )/𝑝1 (𝑥𝑖 )∑𝑛
𝑖 𝑝2 (𝑥𝑖 )/𝑝1 (𝑥𝑖 )

. (9)

These WIS estimators both have a small bias but are consistent. In graphics, WIS is commonly used
when filtering pixel samples in path tracers, for example [Pharr et al. 2023, Section 5.4.3]. Other
prior applications of WIS in rendering include Monte Carlo radiosity [Bekaert et al. 2000] and a
photon mapping technique [Szirmay-Kalos and Szecsi 2003].
We propose a generalization of Equation 9 that allows taking samples from 𝑛 different PDFs

𝑥𝑖 ∼ 𝑝𝑖 , as is the case with texel sharing. Assuming for now we have a continuous PDF 𝑝c that is
nonzero where 𝑓 (𝑥) > 0, and additional PDFs 𝑝𝑖 (𝑥) that are nonzero when 𝑝c is, then our estimator
is ∑𝑛

𝑖 𝑓 (𝑥𝑖 )/𝑝𝑖 (𝑥𝑖 )∑𝑛
𝑖 𝑝c (𝑥𝑖 )/𝑝𝑖 (𝑥𝑖 )

, (10)

which we believe is novel.

4The reweighting in WIS bears some similarity to importance resampling [Bitterli et al. 2020; Talbot et al. 2005], though
those methods are used when it is inexpensive to generate candidate samples and where selecting a subset of those samples
for evaluation is desired; this is not the case for texture filtering. See Bitterli et al. [Bitterli et al. 2020, Appendix B] for further
discussion of connections between WIS and resampled importance sampling as well as to Monte Carlo ratio estimators.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 14. Publication date: May 2025.



14:8 Bartlomiej Wronski, Matt Pharr, and Tomas Akenine-Möller

This estimator is consistent, i.e., it converges to the value of the integral 𝜇 =
∫
𝑓 (𝑥)d𝑥 with

probability 1. We can see this by first writing it in the equivalent form:
1
𝑛

∑𝑛
𝑖 𝑓 (𝑥𝑖 )/𝑝𝑖 (𝑥𝑖 )

1
𝑛

∑𝑛
𝑖 𝑝c (𝑥𝑖 )/𝑝𝑖 (𝑥𝑖 )

. (11)

Following Owen [Owen 2013, Theorem 9.2], since 𝑝𝑖 > 0 where 𝑓 > 0, the numerator of Equation 10
is the average of independent random variables that each are unbiased estimates of 𝜇. In turn,
the numerator converges to 𝜇. Next, because 𝑝c is a PDF, it integrates to 1. We can use the same
argument to show that the denominator converges to 1 as 𝑛 → ∞. Thus, their ratio converges to 𝜇

as well. Like other WIS estimators, our estimator is biased, but the bias is small in practice.
To apply this continuous estimator to the texture filtering sum, we take the reconstructed

texture function 𝑡r of Equation 2 for 𝑓 and define corresponding PDFs with the product of Dirac
delta functions at (𝑢𝑖 , 𝑣𝑖 ) and the reconstruction filters. (See Section S-1 in the supplemental for
a derivation showing how Pharr et al. effectively did this with one-tap STF [Pharr et al. 2023].)
We would like to estimate the filtered texture value at a point (𝑢, 𝑣), where each lane has sampled
a texel location (𝑢𝑖 , 𝑣𝑖 ) from its texture filter 𝑓𝑖 ’s PMF 𝑝𝑖 . If we write the current lane’s texture
reconstruction filter as 𝑓c (𝑢′, 𝑣 ′) = 𝑓r (𝑢 − 𝑢′, 𝑣 − 𝑣 ′) with an associated PMF 𝑝c, the estimator is:∑𝑛

𝑖 𝑓c (𝑢𝑖 , 𝑣𝑖 ) T𝑢𝑖 ,𝑣𝑖 /𝑝𝑖 (𝑢𝑖 , 𝑣𝑖 )∑𝑛
𝑖 𝑝c (𝑢𝑖 , 𝑣𝑖 )/𝑝𝑖 (𝑢𝑖 , 𝑣𝑖 )

. (12)

If the texture reconstruction filter is positive and normalized then 𝑝c (𝑢𝑖 , 𝑣𝑖 ) = 𝑓c (𝑢𝑖 , 𝑣𝑖 ) and similarly
𝑝𝑖 = 𝑓𝑖 , giving ∑𝑛

𝑖 𝑓c (𝑢𝑖 , 𝑣𝑖 ) T𝑢𝑖 ,𝑣𝑖 /𝑓𝑖 (𝑢𝑖 , 𝑣𝑖 )∑𝑛
𝑖 𝑓c (𝑢𝑖 , 𝑣𝑖 )/𝑓𝑖 (𝑢𝑖 , 𝑣𝑖 )

. (13)

If we define weights𝑤𝑖 =
𝑓c (𝑢𝑖 ,𝑣𝑖 )
𝑓𝑖 (𝑢𝑖 ,𝑣𝑖 ) and simplify, we have:

𝑛∑︁
𝑖

𝑤𝑖∑𝑛
𝑗 𝑤 𝑗

T𝑢𝑖 ,𝑣𝑖 . (14)

Thus, the weights are normalized and sum to one, guaranteeing that our estimator always produces
a convex combination of the filtered texels. As a result, constant texture regions have zero error.

However, unlike the general case, we do not necessarily have 𝑝𝑖 > 0 where 𝑓 > 0 and 𝑝c > 0 and
thus convergence is not guaranteed. We find in practice that the error due to this is small. Crucially,
unlike the standard importance sampling estimator, ours does not have the risk of returning very
large or small values due to a mismatch between 𝑓 and the 𝑝𝑖 . On the other hand, a significant 𝑓
and 𝑝𝑖 mismatch can still cause a visual error in high-contrast regions. The resulting high weight is
normalized with other contributing weights but causes our algorithm to effectively select one of
the texels from the other lanes. This can result in pixels with a firefly-like appearance in highly
specular regions (see Figure 1).

4.2.1 Exact Filtering. Some simple filters, such as bilinear, require only four distinct texels for exact
reconstruction. We observe that using high-quality, anti-correlated random number generators,
such as blue noise, there is a high probability that all four distinct texels will be sampled in the pixel
neighborhood. In such cases, we can return the filtered value directly without using our estimator.
We call this extension exact filtering, and show an example of its efficiency in Figure 5 (two middle
columns), and evaluate it in Section 5. It introduces an additional small bias but reduces the error.
Exact filtering is practical with small filter footprints, such as bilinear. In contrast, a bicubic filter
requires 16 texels for perfect reconstruction and the probability of sampling all those values even
across an entire 32-element wave is low.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 14. Publication date: May 2025.



Improved Stochastic Texture Filtering Through Sample Reuse 14:9

Fig. 5. From left to right: reference bilinear filtering, our WIS estimator, our WIS estimator with exact filtering,
and exact filtering with equal sampling probabilities of texels inside of the filter footprint. The rightmost
image shows a much higher percentage of pixels using exact filtering at the cost of severe visual artifacts,
mostly visible at bilinear filter footprint boundaries.

A limitation of exact filtering is that because each pixel samples a texel according to its filter
PMF, texels that only make small contributions to the pixels in a wave may be sampled only rarely.
We briefly explored strategies that change the sampling probabilities to be more uniform under
strong magnification, similarly to defensive importance sampling [Hesterberg 1995]. We found
that while those strategies increase the number of pixels where exact filtering is possible, they can
lead to severe grid-like visual artifacts (Figure 5 rightmost column). The main reason is that a lane
cannot access elements outside of the wave. For instance, the top left pixel of a wave cannot access
any elements to the left or above it, which might be needed for its exact bilinear filter depending
on how pixels’ UV values align with the screen pixel grid.

4.3 Sharing Footprints Within Waves
With our approach, each lane in a wave has an associated texel sharing footprint that specifies which
other lanes it draws texel values from. With quad intrinsics, these footprints are restricted to fixed
grid positions and access is allowed to only three neighbors (Section 2.3). With wave intrinsics, one
is free to use any lanes inside the wave and any number of them, giving a wider design space. In
the following, we assume a 32-wide wave, though the concepts apply to other wave sizes. A wave
with 32 lanes may be configured as 16 × 2 or 8 × 4 pixels. We found that 8 × 4 is preferable, since it
allows for larger, square-like sharing footprints, which tend to give lower error.

Our design criteria for sharing footprint size and placement were:
(1) Prefer lanes close to the current lane to improve the chances of sharing a useful texel value.
(2) Use the same sharing filter footprint size for all lanes inside a wave to avoid unnecessary

thread divergence.
(3) Maximize the variety of shared texel values between lanes.

4.3.1 Square Footprints. Square sharing footprints are a natural choice that ensures that the closest
possible lanes are used for sharing. Figure 6 considers 2 × 2 footprints. The top half shows the
only possible footprint placement for quad intrinsics. With quad intrinsics, the four lanes inside
each quad end up with the same set of texel values after sharing. Under high magnification, all will
compute nearly the same filtered color introducing high spatial correlation.
In the bottom part of the figure, we show one possible layout for 2 × 2 footprints when using

wave intrinsics, which allows the footprints to have more variety. The false-colored pattern in the
lower right shows that this method provides smaller regions with the same texel values used at
adjacent lanes compared to quad intrinsics. The error is not significantly reduced, but it is less
spatially correlated, which is preferable for spatiotemporal denoising.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 14. Publication date: May 2025.



14:10 Bartlomiej Wronski, Matt Pharr, and Tomas Akenine-Möller

Fig. 6. Examples of 2 × 2 footprints for waves of size 16, configured as 4 × 4 lanes. A texel sharing footprint
consists of a yellow lane, which is the lane whose filtered value we want to compute, together with a set of
texel samples from dark green lanes. Top: using quad intrinsics the footprints are restricted by the API to
have the upper left coordinates of a quad be even in 𝑥 and 𝑦. All lanes in each quad filter the same texel values.
Under high magnification, 2 × 2 regions produce almost identical color after stochastic filtering, illustrated by
the colored pattern at the right. Bottom: using wave intrinsics, the 2 × 2 footprints have more degrees of
freedom in that they can be placed anywhere inside the wave. The sharing pattern visualization at the right
has fewer regions of similar color, resulting in less spatial correlation.

An illustration of 3 × 3 and 4 × 4 footprints can be found in our supplemental material, and 3 × 3
is also visualized at the top of Figure 8.

Fig. 7. Single frame crops of deterministic (left) and
sparse (right) sharing footprints with 9 samples.
The deterministic pattern yields visible square and
edge discontinuities, while using the pseudorandom
sparse pattern reduces the blocky appearance and
resembles dithering.

4.3.2 Pseudorandom Sparse Footprints. Square
footprints are straightforward to implement and
exhibit excellent reuse locality, increasing the
probability of successful reuse of texels between
lanes. However, with larger footprints, they can
lead to visible structured square patterns, such
as those visible in the left part of Figure 7. The
lanes at the edges and corners of the wave filter
the same texel values as their neighbors, leading
to correlation artifacts that are difficult to remove
with spatiotemporal denoisers. When a denoiser
averages correlated pixels, the variance is not re-
duced.
To alleviate this issue, we propose an alterna-

tive based on pseudorandom, pre-generated sparse sharing footprints. Figure 8 compares a regular
3 × 3 square footprint to pseudorandom, pre-generated sparse sharing footprints. We balance lane
locality (and in turn, locality of the UV coordinates at each lane), where greater locality gives a
higher chance of sharing samples, with dithering-like structures that give a result that is easier to
resolve with a spatiotemporal filter. Furthermore, we reduce correlations between adjacent lanes
by enforcing that none of the lanes are overrepresented in the aggregate of the sharing footprints.
The right part of Figure 8 shows the histogram of each lane’s usage for both a 3 × 3 footprint and
a sparse footprint. The 3 × 3 footprint underrepresents the texels sampled by the corner lanes
and overrepresents the center ones, while the sparse footprint provides higher uniformity. This
uniformity of texel use is beneficial as it avoids repeated similar and correlated texels.

Figure 7 compares the resulting images of the two approaches. Pseudorandom sparse footprints
are more noisy, but the noise resembles dithering and is easier to temporally resolve and denoise
as we show in Section 5.5. We describe a simple optimization-based method to generate those
patterns in Section S-5. In our implementation, we generate multiple different patterns that we
cycle through over frames to further break up any visual structure.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 14. Publication date: May 2025.



Improved Stochastic Texture Filtering Through Sample Reuse 14:11

Deterministic 3× 3: Per pixel selections

0 15 31

2

4

6

8

10

12

14

16

Histogram std dev 3.74

Sigma 1.4: Per pixel selections

0 15 31

2

4

6

8

10

12

14

16
Histogram std dev 0.35

Fig. 8. Top: comparison of deterministic 9 sample sharing footprints (3 × 3 squares) and pseudorandom
sparse footprints. The grid diagram (left) shows which wave elements samples (green) are reused by the
given lane (yellow). The histogram (right) shows how many times a texel sample from the given lane is used
by all the lanes in the wave. Bottom: sparse footprints balance sample reuse locality with uniform texel reuse
contributions to break up visible structures.

STBN Vec2 STBN Scalar Quad STBN (ours) STBN Vec2 PSD STBN Scalar PSD Quad STBN (ours) PSD

Fig. 9. Comparison of the visual appearance and power spectra of various STBN patterns–Vec2 and scalar
versions of the original STBN algorithm [Wolfe et al. 2022] as well as our proposed modification. The Vec2
version has the worst blue noise properties and a significant amount of energy in the low frequencies. We
observe in the rightmost power spectral density plot that our modification prioritizes diagonal frequencies
and removes horizontal and vertical leftover patterns.

4.4 Blue Noise Mask Improvements
The original STF technique recommended the use of spatiotemporal blue noise masks [Wolfe
et al. 2022]. Since our technique relies even more on neighboring sample diversity and because of
advancements in blue noise masks [Donnelly et al. 2024], we reevaluate their choice.

We found that the Vec2 version of the STBN mask [Wolfe et al. 2022] yields suboptimal results.
This can be explained by the algorithm used to generate those masks—simulated annealing [Wolfe
et al. 2022]—rather than void and cluster, yielding inferior blue noise properties. We confirm this in
the power spectra in Figure 9. Our first modification is to simply concatenate independent scalar
realizations from the void and cluster algorithm.
Further, we adapt the STBN pattern to the unique needs of our algorithm. While STBN masks

optimize for blue noise value distribution and anti-correlation of a pixel with all of its neighbors,
we are reusing only some of the neighbors for wave sample sharing. For instance, we can never
sample across the wave boundaries. In the specific case of 2 × 2 quad sharing, we always reuse
samples between neighbors on a fixed 2 × 2 grid.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 14. Publication date: May 2025.



14:12 Bartlomiej Wronski, Matt Pharr, and Tomas Akenine-Möller

1 // uv is in [0 ,1]^2 and txDim is the texture resolution.
2 float texelFloatCoords = uv * txDim - float2 (0.5f);
3 // (...) One -tap STF sampling with access of one texel.
4 // texelFloatCoords are the original floating -point coordinates for filtering.
5 // sampled_uv are the integer coordinates of the STF -fetched texel.
6 // T is the fetched/decompressed single texel.
7 float p_sampled_uv = GetFilterPMF(texelFloatCoords , sampled_uv);
8 float4 T = texture[sampled_uv ];
9
10 float4 sum_w_i_T_i = 0.0f;
11 float sum_w_i = 0.0f;
12 for (uint i = 0; i < FOOTPRINT_SIZE; ++i) {
13 uint laneIdx = waveLaneSet[currentLaneIdx ][i];
14 int2 uv_i = WaveReadLaneAt(sampled_uv , laneIdx);
15 float p_i = WaveReadLaneAt(p_sampled_uv , laneIdx);
16 float4 T_i = WaveReadLaneAt(T, laneIdx);
17 float p_c = GetFilterPMF(texelFloatCoords , uv_i);
18 float w_i = p_c / p_i;
19 sum_w_i_T_i += w_i * T_i;
20 sum_w_i += w_i;
21 }
22 return sum_w_i_T_i / sum_w_i;

Fig. 10. Implementation of the core texel sharing algorithm with filtering using Equation 10.

Our proposed modification changes the void and cluster energy splatting function to splat twice
as much energy to the neighbors in each fixed 2 × 2 quad. We visualize the resulting pattern and its
power spectral density in Figure 9. This modification removes some of the horizontal and vertical
patterns and spectral components and increases the noise energy in the spectrum diagonals. We
evaluate the impact of those modifications in Section 5.3.

4.5 Implementation Details
Here we combine all introduced components of our algorithm in a GPU-friendly manner. We focus
on the more general and flexible wave intrinsics; see Figure 10
Our method starts with each lane sampling a single texel according to its filter, following the

standard STF approach. Each lane then iterates over the lanes of its associated footprint. In each
loop iteration, we use WaveReadLaneAt() to fetch the information about texel samples from other
lanes in the wave. In particular, we obtain texel values and their associated integer coordinates and
the PMF value for sampling them. The integer texel coordinates are needed to compute the current
lane’s filter sampling PMF. The estimator introduced in Section 4.2 is then used to compute the
weight of each sample. We accumulate the weighted texels as well as the weights, and divide the
accumulated texels by the accumulated weights. This can be expressed as follows. In the code above,
the texel sharing footprint is encoded as a lookup table in the waveLaneSet array. If deterministic
sharing footprints are used, the corresponding offsets may be computed at runtime. The number
of loop iterations (FOOTPRINT_SIZE) is based on the size of the sharing footprints—4, 9, or 16 in
our experiments. An example implementation of the GetFilterPMF function is provided in the
supplement (Section S-6).

Our approach guarantees that the weight for the current lane is always equal to one due to the
equality of the PMFs. Conversely, if a texture sample of a neighbor falls outside of the original lane’s
filtering footprint, the weight is zero, preventing incorrect contributions. As a consequence, our
method is robust when no wave sharing is possible: if the magnification factor is insufficient or if
wave neighbors sample texels that make no contribution to the current lane, our algorithm returns
exactly the same result as one-tap STF, since each lane is always included in its own footprint.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 14. Publication date: May 2025.



Improved Stochastic Texture Filtering Through Sample Reuse 14:13

1 2 4 8 16

SPP

30

35

40

45

50

P
S

N
R

(d
B

)

1.0 2.0 4.0 8.0 16.0 32.0 64.0

zoom factor

10

15

20

25

30

35

40

45

50

P
S

N
R

(d
B

)

STF

IS

IS clamped

MIS

MIS clamped

PMIS

PMIS clamped

regression

regression clamped

weighted

Fig. 11. Left: PSNR as a function of the number of samples per pixel (SPP) for the scene in Figure 12. The setup
is high magnification, bilinear filtering, diffuse and specular normal mapping, and 3×3 sharing footprints. The
estimators we evalute include classic one-tap STF, clamped and non-clamped versions of standard importance
sampling (IS), multiple importance sampling (MIS), pairwise MIS (PMIS), the regression estimator, and our
new weighted estimator. Our weighted estimator provides the best results. Right: PNSR as a function of
zoom factor with rendered images below. Note that a zoom factor of 1.0 gives a 1–1 mapping between texels
and pixels, and a factor of 64 means a texel maps to 64 × 64 pixels, for example.

In our implementation, we repeat this loop for each sampled material texture for simplicity.
We note however, that in practice when multiple textures share the same UV coordinates and
resolution, the loop could be executed only once and the PMF and weight computations could be
shared to minimize the amount of shader code and to reduce the arithmetic instruction overhead.

5 Results
We have implemented our technique in Falcor [Kallweit et al. 2022]. Rendering starts with Falcor’s
GBufferRaster-pass, which outputs only depth and UVs, similar to modern visibility buffer ap-
proaches [Haar and Aaltonen 2015]. The resulting buffer is fed to a custom compute shader pass,
which performs texture lookups and texel sharing before filtering texels and computing shading.
All results were rendered using an NVIDIA RTX 4090 GPU and all used Falcor other than the
performance measurements with neural texture compression in Section 5.6.

5.1 Comparison of Estimators
We have evaluated the error in rendered images for a number of candidate estimators (Section 4.1
and 4.2); the results are summarized in Figure 11. The baseline is classic one-tap STF. We have
included clamped and non-clamped versions of standard importance sampling (IS), multiple im-
portance sampling (MIS), pairwise MIS (PMIS), and the regression estimator. Those are compared
against our novel weighted estimator (Equation 10). The left part of Figure 11 shows PSNR (com-
puted in linear RGB space) as a function of samples per pixel (SPP). Figure 12 shows visual results
from these estimators for the left part of Figure 11. Our weighted estimator consistently has both
lowest numeric error and the best visual appearance with respect to the reference.
We have also evaluated how the degree of texture magnification affects error for the various

estimators; results are shown on the right side of Figure 11. At zoom factors of one and slightly
greater, there is little texture-space overlap of each pixel’s filter. This leads to the problematic case
for importance sampling discussed in Section 2.2 where one pixel may sample a texel with low

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 14. Publication date: May 2025.



14:14 Bartlomiej Wronski, Matt Pharr, and Tomas Akenine-Möller

full image STF IS MIS PMIS regression

ground truth our weighted IS clamped MIS clamped PMIS clamped regression clamped

Fig. 12. Visual results from the estimators with bilinear filtering. See the caption in Figure 11 for an explanation
of the abbreviations. STF produces a poor highlight, IS andMIS are substantially more noisy than our weighted
estimator, and PMIS misses part of the highlight. The regression estimator works well but has higher runtime
cost than ours and only guarantees results within the range of the texel values if clamping is used.

Table 1. Quality measures, PSNR (in dB, where higher is better) and FLIP (lower is better), for different
filter footprint configurations at 1 SPP. ‘*’ means exact filtering (Section 4.2.1) is being used; ‘q’ means quad
intrinsics are used; and ‘w’ means wave intrinsics are used. All variants of our method have lower error than
one-tap STF, with error decreasing more with larger sharing footprints and when exact filtering is used.

STF 2 × 2q 2 × 2q* 2 × 2w 2 × 2w* 3 × 3 3 × 3* PS 9× PS 9×* 4 × 4 4 × 4*
PSNR (↑) 27.82 36.76 36.89 34.94 35.09 40.14 41.60 38.07 39.47 42.29 44.87
FLIP (↓) 0.0480 0.0311 0.0309 0.0342 0.0338 0.0258 0.0214 0.0268 0.0233 0.0243 0.0157

probability but then share it with a pixel where that texel has a high filter weight; as a result,
that estimator has high variance. In contrast, methods like our weighted estimator essentially
revert to one-tap STF’s performance in that case, which is all that can be expected when sharing
is rarely successful. As the zoom factor increases, the mismatch of PMFs between nearby pixels
decreases and all methods give lower error as sharing is successful more frequently. This provides
an empirical demonstration of our main insight—with increasing magnification factors, adjacent
pixels tend to share the same texel values and draw them from the same distributions, dramatically
improving the reuse probability. Throughout this range, our estimator has the lowest error and the
clamped regression estimator is a close second.

In practice our estimator has lower computational cost than the regression estimator as it requires
fewer arithmetic operations and only a single loop over the samples rather than three. Therefore,
we will focus on our weighted estimator alone for the remainder of this section.

5.2 Evaluation of Sharing Footprints
Table 1 shows the effect of varying the texel sharing footprint with a bilinear filter. It includes
square texel sharing footprints, 2×2 quad and wave intrinsics, 3×3, 4×4, as well as a pseudorandom
sparse footprint with 9 texels (PS 9×) of sharing. We also present results for exact filtering (EF),
described in Section 4.2.1. Our optimized quad STBN masks were used for all results except 3 × 3,
which uses FAST EMA product (see Section 5.3).

As expected, larger footprints tend to give lower error. For 2× 2, there are rarely enough samples
for EF to be applicable. However, for larger footprints (≥ 9), EF reduces the error. The pseudorandom

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 14. Publication date: May 2025.



Improved Stochastic Texture Filtering Through Sample Reuse 14:15

2× 2 wave 2× 2 quad LUT (9 samples) 3× 3 4× 4

30

32

34

36

38

40

42

P
S

N
R

White noise (PCG)

STBN 128x128x64 Vec2

STBN 128x128x64 scalar

Quad STBN 128x128x64 (ours)

FAST 3× 3 EMA Separate

FAST 3× 3 EMA Product

FAST 3× 3 Gauss Separate

Fig. 13. Impact of the pseudorandom number source on the PSNR score of our algorithm (non-denoised) for
different footprints when used for bilinear filtering.

sparse footprint with size 9 (PS 9×), is not quite as good as a 3 × 3 footprint, which is expected
since it spreads out the filter footprint compared to the square 3 × 3. However, this pattern works
better when spatiotemporal denoising is used (Section 5.5).

5.3 Blue Noise Mask Evaluation
We have measured the effect of our modifications to the STBN pattern proposed in Section 4.4 to
error in images and compared to FAST noise [Donnelly et al. 2024]. We present the quantitative
results in Figure 13. The improvement from our modified STBN pattern is dramatic for the quad
sharing variants and it also provides a marginally better PSNR than the alternatives for the 4 × 4
footprint. FAST noise significantly improves the results for the 3 × 3 footprint, as it was optimized
for a 3 × 3 blurring kernel. Therefore, we recommend the 3 × 3 FAST noise for the 3 × 3 footprint,
while for all the other footprints we suggest using our modified STBN pattern.

5.4 Bicubic B-Spline Filtering
Our analysis so far has focused on the bilinear filter due to its ubiquity in real-time rendering and to
facilitate the adoption of STF as a drop-in replacement for the traditional hardware magnification
filter. However, one of the benefits of STF is that higher-quality filters like bicubic or Gaussian
filters may be used at no additional texture sampling cost.
We evaluate our method with a bicubic B-spline filter. This filter is commonly used in offline

rendering applications due to its pleasant appearance and removing some diagonal aliasing of the
bilinear filter. Figure 14 shows results with different sharing pattern configurations, without and
with DLSS spatiotemporal denoising. In this case, one-tap STF fails to reproduce the shape of the
specular highlight. Our method, even with the 2 × 2 square sharing footprint, significantly reduces
the error and better preserves the highlight’s appearance. Increasing the footprint size further
reduces the error, but turns noise into visible structured and square or streak artifacts. We analyze
this effect in the following section.

5.5 Spatiotemporal Denoising
Our technique can have non-obvious interactions with spatiotemporal denoisers. On the one hand,
it significantly reduces the variance of individual pixels, making denoising easier. Conversely, it
introduces correlation between adjacent pixels due to texture sample reuse. Denoisers typically
assume uncorrelated (or inversely correlated, in the case of blue noise sampling) signals and struggle
with distinguishing between image structure and correlated noise. Numerous temporal filtering
techniques are used in production game engines [Yang et al. 2020], so for our evaluation we focus

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 14. Publication date: May 2025.



14:16 Bartlomiej Wronski, Matt Pharr, and Tomas Akenine-Möller

Bilinear filter

B-Spline bicubic filter

Bilinear filter Ground truth (B-Spline bicubic)
PSNR (↑) / FLIP (↓)

Bicubic STF
16.24 / 0.266

Bicubic STF denoised
20.79 / 0.258

Bicubic 2× 2
22.08 / 0.125

Bicubic 2× 2 denoised
29.65 / 0.104

Bicubic sparse
24.25 / 0.100

Bicubic sparse denoised
33.38 / 0.076

Bicubic 3× 3
24.60 / 0.104

Bicubic 3× 3 denoised
33.88 / 0.074

Bicubic 4× 4
27.70 / 0.085

Bicubic 4× 4 denoised
38.19 / 0.051

Fig. 14. Use of our method with the B-spline bicubic filter, both for single frames and denoised with DLSS. We
provide the bilinear-filtered image for comparison. The B-spline bicubic filter removes unpleasant diagonal
specular aliasing. The original STF method fails to reproduce sharp specular peaks. With increasing sharing
footprint size the error decreases, especially on specular peaks. However, with large sharing footprints, starting
with the 3 × 3 square, visible square or streak structures start to appear.

TAA

PS 9× 3× 3 4× 4
PS 9×

alternate camera
3× 3

alternate camera
4× 4

alternate camera

DLSS
Balanced

DLSS
DLAA

Fig. 15. Results of DLSS DLAA, DLSS Balanced, and TAA with different footprints. TAA is consistently
the most noisy but shows acceptable results with sparse footprints (PS 9×). DLSS Balanced struggles with
the 3 × 3 footprint at some camera angles and 4 × 4 at all tested camera angles. DLAA consistently denoises
all footprint configurations well and closely matches reference images. Across the compared denoisers, the
sparse footprint shows consistently good results at all tested camera angles.

on two ends of the complexity spectrum—a basic implementation of TAA in Falcor inspired by
the Unreal Engine 4 TAA [Karis 2014], as well as a modern machine-learning based approach of
DLSS [Liu 2022]. DLSS comes with different quality profiles, from pure spatiotemporal denoising and
antialiasing (called DLAA), to temporal frame upsampling. Those additional profiles are commonly
used to improve the frame rate at the cost of some visual quality. To make our evaluation complete,
we analyze behavior of our method combined with both DLAA and DLSS (with the Balanced profile,
rendering at 58% resolution). While we describe our observations and include visual examples, we
encourage the reader to review our video in the supplementary material to see these effects in
motion. Our video shows results using both TAA and the DLAA version of DLSS.
Our main finding is that with any sample reuse footprint, DLSS in the DLAA profile is able to

remove the residual noise effectively and with a good temporal stability. On the other hand, the
Balanced profile can struggle with larger regular footprints, such as 3 × 3 or 4 × 4. While the 4 × 4
footprint is consistently challenging, the 3 × 3 footprint shows different behaviors depending on

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 14. Publication date: May 2025.



Improved Stochastic Texture Filtering Through Sample Reuse 14:17

the camera position—both in static and the dynamic scenes. Addressing those artifacts was our
main motivation for pseudorandom sparse footprints (Section 4.3.2); we show their efficiency in
Figure 15. While sparse footprints are marginally noisier than the 3 × 3 footprint, they do not show
view-dependent inconsistency.

By comparison, TAA tends to consistently retain small amounts of residual noise of the bilinear
filter with all footprints and camera trajectories. Sparse footprints tend to help its noise reduction,
but on average, it tends to be much noisier than DLSS. With the bicubic filter, TAA produces severe
banding-like visual artifacts caused by the local color bounding box clamping [Karis 2014].

5.6 Performance
To test the computational performance of our method in one of the targeted use cases, we measured
frame time in a stand-alone renderer supporting neural texture decompression [Vaidyanathan et al.
2023]. The rendering resolution was 3840 × 2160 and we zoomed in on a piece of geometry so that
every pixel had magnified textures. The material consisted of 9 texture channels split between
three textures (base color, normal map, material parameters). The baseline is one-tap STF. Our
method with a 2 × 2 footprint took just 0.04 ms longer than the baseline, while 3 × 3 and 4 × 4 took
0.11 ms and 0.14 ms longer, respectively. As a reference, we also attempted to decode 2 × 2 texels
needed for a classic full bilinear filter. A full bilinear filter took more than 5× the cost of a single
sample, instead of expected 4× linear scaling, most likely due to high register pressure of NTC
decompression.

6 Conclusions and Future Work
We have presented a significant improvement to STF under magnification based on sharing texels
among nearby pixels, allowing a more accurate estimate of the filtered value. The additional cost
of our method is small and limited to arithmetic and wave register swizzling instructions, i.e.,
there is no additional texture sampling cost or memory traffic. Our method not only reduces
stochastic noise, making post-rendering denoisers more effective, but it also reduces the visual
difference between filtering after shading and filtering before shading. These properties make
STF more attractive for existing game engines, and thus ease the adoption of novel compression
algorithms like NTC [Vaidyanathan et al. 2023] where the number of texels accessed directly affects
performance.
Under magnification, our approach produces results closer to filtering before shading than

filtering after shading. While this is beneficial for many applications, Pharr et al. [Pharr et al. 2024]
discuss cases where filtering after shading is nevertheless preferred. Our technique can be used
selectively and not applied to those specific textures, though it would be worthwhile in future work
to investigate if we can get other benefits of our approach, such as noise and variance reduction,
by applying some of our insights to already-shaded pixel values under magnification.

Developing and evaluating our algorithm, we found that a custom blue noise pattern can improve
the quality dramatically, up to 6dB PSNR difference. This result and insight encourages joint
research of novel custom blue noise masks together with other low-sample rendering techniques.
With our approach, wave lanes independently sample texels; within a sharing footprint, this

may lead to some texels being sampled repeatedly while other useful ones are not sampled at all. It
would be useful to find an efficient way to coordinate pixel texture samples to avoid such cases,
though we note it might be challenging since each lane has a unique set of other lanes that it draws
texels from. However, the benefits of a solution to this problem could go beyond improved image
quality—especially under high magnification, it may be possible to sample less than one texel per
lane on average, thus improving performance of multi-texture sampling.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 14. Publication date: May 2025.



14:18 Bartlomiej Wronski, Matt Pharr, and Tomas Akenine-Möller

Acknowledgments
Many thanks to Pontus Ebelin for help with image & video metrics and reviewing of the paper.
Thanks also to Benedikt Bitterli for reading multiple drafts of the paper and offering many helpful
suggestions, especially related to howwe presented the connection between discrete and continuous
MC estimators. We would also like to thank Marco Salvi for thoughtful comments and feedback as
well as for suggesting the randomization of sharing footprints and Chris Wyman for proof-reading
and suggestions on improving the structure of the manuscript. We had many fruitful discussions
during the development of this work Peter Morley, Johannes Deligiannis, Alexey Panteleev, Mike
Songy, Nathan Hoobler, and Homam Bahnassi, including a suggestion to use larger wave sharing
footprints and their evaluation of the covered techniques in existing production renderers and on
real-world game scenes. We also thank Aaron Lefohn for continuous support of this work. The
Bricks 090 texture set was retrieved from https://ambientcg.com/ and the gravel texture set from
https://kaimoisch.com/free-textures/.

References
Philippe Bekaert, Mateu Sbert, and Yves D Willems. 2000. Weighted Importance Sampling Techniques for Monte Carlo

radiosity. In Eurographics Workshop on Rendering. Springer, 35–46.
Benedikt Bitterli. 2022. Correlations and Reuse for Fast and Accurate Physically Based Light Transport.
Benedikt Bitterli, ChrisWyman,Matt Pharr, Peter Shirley, Aaron Lefohn, andWojciech Jarosz. 2020. Spatiotemporal Reservoir

Resampling for Real-time Ray Tracing with Dynamic Direct Lighting. ACM Transactions on Graphics (SIGGRAPH) 39, 4
(July 2020), 148:1–17. https://doi.org/10.1145/3386569.3392481

Jack Dongarra. 2022. ANot So SimpleMatter of Software. Turing Award Keynote. https://www.hpcwire.com/2022/11/16/jack-
dongarra-a-not-so-simple-matter-of-software/.

William Donnelly, Alan Wolfe, Judith Bütepage, and Jon Valdés. 2024. Filter-Adapted Spatiotemporal Sampling for Real-Time
Rendering. Proceedings of the ACM on Computer Graphics and Interactive Techniques 7, 1 (2024), 13:1–16.

Iliyan Georgiev and Marcos Fajardo. 2016. Blue-Noise Dithered Sampling. In ACM SIGGRAPH 2016 Talks. 1–1.
Ulrich Haar and Sebastian Aaltonen. 2015. GPU-driven Rendering Pipelines. SIGGRAPH Advances in Real-Time Rendering in

Games course (2015).
David Christopher Handscomb. 1964. Remarks on a Monte Carlo Integration Method. Numer. Math. 6, 1 (1964), 261–268.

https://doi.org/10.1007/BF01386074
Tim Hesterberg. 1995. Weighted Average Importance Sampling and Defensive Mixture Distributions. Technometrics 37

(1995), 185–194. https://api.semanticscholar.org/CorpusID:122839484
Nikolai Hofmann, Jon Hasselgren, Petrik Clarberg, and Jacob Munkberg. 2021. Interactive Path Tracing and Reconstruction

of Sparse Volumes. Proceedings of the ACM on Computer Graphics and Interactive Techniques 4, 1 (April 2021), 5:1–19.
https://doi.org/10.1145/3451256

Simon Kallweit, Petrik Clarberg, Craig Kolb, Tomáš Davidovič, Kai-Hwa Yao, Theresa Foley, Yong He, Lifan Wu, Lucy
Chen, Tomas Akenine-Möller, Chris Wyman, Cyril Crassin, and Nir Benty. 2022. The Falcor Rendering Framework.
BSD-Licensed Github Repository.

Brian Karis. 2014. High-quality Temporal Supersampling. Advances in Real-Time Rendering in Games, SIGGRAPH Courses 1,
10.1145 (2014), 2614028–2615455.

Doyub Kim, Minjae Lee, and Ken Museth. 2024. NeuralVDB: High-resolution Sparse Volume Representation using Hierar-
chical Neural Networks. ACM Transactions on Graphics 43, 2 (2024), 20:1–21. https://doi.org/10.1145/3641817

Edward Liu. 2022. DLSS 2.0 - Image Reconstruction for Real-Time Rendering with Deep learning. In Game Developers
Conference.

Morgan McGuire, Michael Mara, and David Luebke. 2012. Scalable Ambient Obscurance. In High Performance Graphics.
97–103.

Microsoft. 2021. HLSL Shader Model 6.0. https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/hlsl-shader-model-
6-0-features-for-direct3d-12. [Online; accessed 2024-09-11].

Art B. Owen. 2013. Monte Carlo Theory, Methods and Examples. https://artowen.su.domains/mc/.
Eric Penner. 2011. Shader Amortization Using Pixel Quad Message Passing. In GPU Pro 2. CRC Press, 349–366.
Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2023. Physically Based Rendering: From Theory to Implementation (4th ed.).

The MIT Press.
Matt Pharr, Bartlomiej Wronski, Marco Salvi, and Marcos Fajardo. 2024. Filtering After Shading with Stochastic Texture

Filtering. Proceedings of the ACM on Computer Graphics and Interactive Techniques 7, 1 (2024), 14:1–20.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 14. Publication date: May 2025.

https://ambientcg.com/
https://kaimoisch.com/free-textures/
https://doi.org/10.1145/3386569.3392481
https://www.hpcwire.com/2022/11/16/jack-dongarra-a-not-so-simple-matter-of-software/
https://www.hpcwire.com/2022/11/16/jack-dongarra-a-not-so-simple-matter-of-software/
https://doi.org/10.1007/BF01386074
https://api.semanticscholar.org/CorpusID:122839484
https://doi.org/10.1145/3451256
https://doi.org/10.1145/3641817
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/hlsl-shader-model-6-0-features-for-direct3d-12
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/hlsl-shader-model-6-0-features-for-direct3d-12
https://artowen.su.domains/mc/


Improved Stochastic Texture Filtering Through Sample Reuse 14:19

Michael JD. Powell and J. Swann. 1966. Weighted Uniform Sampling—a Monte Carlo Technique for Reducing Variance. IMA
Journal of Applied Mathematics 2, 3 (1966), 228–236.

Erik Reinhard, Peter Shirley, and Tom Troscianko. 2001. Natural Image Statistics for Computer Graphics. Univ. Utah Tech
Report UUCS-01-002 (March 2001).

Jerome Spanier. 1979. A New Family of Estimators for Random Walk Problems. IMA Journal of Applied Mathematics 23, 1
(1979), 1–31.

Laszlo Szirmay-Kalos and Laszl Szecsi. 2003. Improved Indirect Photon Mapping with Weighted Importance Sampling. In
Eurographics 2003 - Short Presentations. https://doi.org//10.2312/egs.20031068

Justin Talbot, David Cline, and Parris Egbert. 2005. Importance Resampling for Global Illumination. In Eurographics
Symposium on Rendering, Kavita Bala and Philip Dutre (Eds.). https://doi.org//10.2312/EGWR/EGSR05/139-146

Karthik Vaidyanathan, Marco Salvi, Bartlomiej Wronski, Tomas Akenine-Möller, Pontus Ebelin, and Aaron Lefohn. 2023.
Random-Access Neural Compression of Material Textures. ACM Transactions on Graphics 42, 4 (2023), 88:1–25. https:
//doi.org/10/gsk4fz

Eric Veach and Leonidas J. Guibas. 1995. Optimally Combining Sampling Techniques for Monte Carlo Rendering. In
Proceedings of SIGGRAPH. 419–428. https://doi.org/10.1145/218380.218498

Alan Wolfe, Nathan Morrical, Tomas Akenine-Möller, and Ravi Ramamoorthi. 2022. Spatiotemporal Blue Noise Masks. In
Eurographics Symposium on Rendering. 117–126.

Lei Yang, Shiqiu Liu, and Marco Salvi. 2020. A Survey of Temporal Antialiasing Techniques. Computer Graphics Forum 39, 2
(2020), 607–621.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

Proc. ACM Comput. Graph. Interact. Tech., Vol. 8, No. 1, Article 14. Publication date: May 2025.

https://doi.org//10.2312/egs.20031068
https://doi.org//10.2312/EGWR/EGSR05/139-146
https://doi.org/10/gsk4fz
https://doi.org/10/gsk4fz
https://doi.org/10.1145/218380.218498

	Abstract
	1 Introduction
	2 Background and Previous Work
	2.1 Texture Filtering and Representations
	2.2 Monte Carlo Estimators
	2.3 Wave Intrinsics

	3 Error Analysis of Stochastic Texture Filtering
	4 A Stochastic Texture Filtering Algorithm with Sample Reuse
	4.1 Evaluation of Existing Estimators
	4.2 Our Estimator
	4.3 Sharing Footprints Within Waves
	4.4 Blue Noise Mask Improvements
	4.5 Implementation Details

	5 Results
	5.1 Comparison of Estimators
	5.2 Evaluation of Sharing Footprints
	5.3 Blue Noise Mask Evaluation
	5.4 Bicubic B-Spline Filtering
	5.5 Spatiotemporal Denoising
	5.6 Performance

	6 Conclusions and Future Work
	Acknowledgments
	References

