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A single polygon with a diffuse BRDF and no shad-
ows, 1 sample per pixel. Left: uniform solid angle sam-
pling [UFK13]. Right: our approach, which composes
the uniform solid angle warp with a second warp that
approximates projected solid angle sampling.

BSDF and light sampling BSDF + BSDF-warped light sampling
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s A complex scene with shadows and a variety of BSDFs,

4 samples per pixel. Left: MIS with BSDF and uniform
solid angle sampling of the lights. Right: MIS where
the light is sampled by composing a second warp that
approximates the BSDF and cosine. MRSE (error) is
reduced by over 60% with a run-time cost of about 10%.

Figure 1: Two examples of fitting and composing warps to improve sampling efficiency.

Abstract
We introduce a Monte Carlo importance sampling method for integrands composed of products and show its application to
rendering where direct sampling of the product is often difficult. Our method is based on warp functions that operate on the
primary samples in [0,1)n, where each warp approximates sampling a single factor of the product distribution. Our key insight
is that individual factors are often well-behaved and inexpensive to fit and sample in primary sample space, which leads to a
practical, efficient sampling algorithm. Our sampling approach is unbiased, easy to implement, and compatible with multiple
importance sampling. We show the results of applying our warps to projected solid angle sampling of spherical triangles, to
sampling bilinear patch light sources, and to sampling glossy BSDFs and area light sources, with efficiency improvements of
over 1.6× on real-world scenes.

1. Introduction

Many rendering problems are formulated as integration prob-
lems that solve the Rendering Equation using Monte Carlo in-
tegration [PJH16]. A core Monte Carlo variance reduction tech-
nique is importance sampling, which is based on sampling ran-
dom points from some desired probability density function (PDF).
This sampling process is generally defined in terms of mapping
n-dimensional uniform points u ∈ [0,1)n (also known as the pri-
mary sample space (PSS)) to an n-dimensional manifold D (e.g.,
the surface of a shape or the unit hemisphere) using a mapping
[0,1)n→D.

Given a PDF p(x), such a mapping can be found through the

inversion method, where p is written as the product of 1D PDFs

p(x) = p(x1)p(x2|x1) · · · p(xn|x1, . . . ,xn−1) , (1)

where the CDFs P(xi|x1, . . . ,xi−1) of each 1-dimensional PDF are
derived and subsequently inverted. This approach allows the use of
stratified and low-discrepancy PSS points, which generally reduces
error. However, for many quantities of interest in rendering it is not
possible to compute the closed form of every one of the PDFs, the
CDFs, and inverse CDFs.

The collection of inverse CDFs is also known as a warp, and in
statistics is called a quantile function. “Warp” describes the process
of displacing uniform random samples non-uniformly to achieve a
desired probability distribution; a warp distributes points according
to its associated probability density.
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It is common practice to choose sampling methods for the indi-
vidual factors that are analytically invertible, even though they do
not match the full distribution of interest, in order to take advan-
tage of the inversion method. For example, Arvo derived a warp
that uniformly sampled spherical triangles [Arv95], but no analytic
technique for uniformly sampling cosine-weighted spherical trian-
gles is known. The cosine term may vary significantly over the sur-
face of a triangle; in turn, that variation increases variance in Monte
Carlo estimates of integrals that include its factor, since it is not ac-
counted for in the importance sampling distribution.

Given a base warp (e.g. one that samples points on a light
source), we show that additional warps can be applied to PSS be-
fore the base warp in order to better approximate a desired dis-
tribution (e.g. cosine-weighted solid angle sampling). Because the
composed warp is used for importance sampling, it maintains an
unbiased Monte Carlo estimator. The only potential disadvantage
of our approach is a loss of efficiency if the choice of fit yields a
composed warp that poorly approximates the desired product distri-
bution. However, these composed warps can be used in conjunction
with multiple importance sampling [VG95] as an additional sam-
pling technique, thus limiting error if the warp is inaccurate.

We have investigated several PSS warps that can be efficiently
fit and evaluated. We find that in practice even simple warps fit
with a simple fitting algorithm are effective at reducing variance.
The technique is easily added into existing rendering systems. We
demonstrate efficiency improvements in complex scenes of over
2.5× for diffuse materials and over 1.6× for materials with glossy
BSDFs.

2. Related Work

Importance sampling has been extensively investigated for render-
ing; here we focus on work directly related to ours. See Pharr et
al. [PJH16] for a comprehensive overview.

Algorithms based on the inversion method have been among the
most effective importance sampling techniques in practice because
they are simple, local and analytic, and they can be used with strat-
ified and low-discrepancy sample points, which further reduce er-
ror. Representative examples include Shirley et al.’s algorithms for
sampling light sources [SWZ96], Arvo’s spherical triangle sam-
pling [Arv95], and Heitz and d’Eon’s microfacet sampling [Hd14].
Our method builds directly on inversion-method sampling tech-
niques: we augment such techniques by taking into account missing
factors via a pre-warp of PSS.

It is often difficult to derive closed-form sampling algorithms,
and the variance of the Monte Carlo estimator is high if the sam-
pling distribution is a poor match for the integrand. Multiple sam-
pling distributions can be combined using multiple importance
sampling (MIS) [VG95] to bound the variance, but error can still
be inferior to that achieved by accurate product sampling. Even
though our approach aims at product sampling, it can be combined
with defensive sampling strategies using MIS to prevent approxi-
mation errors from increasing variance by a large amount.

A variety of approaches have been developed for sam-
pling directly from products of factors, though with limita-
tions such as high memory cost [CAM08], high computational

cost [MMR+19], the requirement that BRDFs be precomputed
and tabularized [RCL+08], or being applicable only to products
of certain types of functions [HEV+16, HZE+19]. Algorithms for
environment map product sampling also exist but need to draw
multiple light samples per shading point in order to be effec-
tive [CJAMJ05, CEL18]. In contrast, our approach requires no ad-
ditional storage and introduces a small computational overhead.

Resampled importance sampling (RIS) approximates a product
sampling distribution [TCE05], though with high variance if the
initial sampled factor is a poor match to the product. RIS is com-
plementary to our approach; in future work it would be interesting
to investigate the performance of applying RIS to samples gener-
ated with our method.

A number of rendering algorithms work from the perspec-
tive of primary sample space. Kelemen et al.’s Metropolis light
transport algorithm [KSKAC02] recasts Veach and Guibas’s algo-
rithm [VG97] to operate in PSS, which leads to a much simpler
implementation. Their insight was that because the mapping from
the PSS to points along a light carrying path is mostly continuous,
small perturbations in PSS generally correspond to small permuta-
tions to a path, and thus Metropolis sampling in PSS is effective.
Our approach leverages this property of PSS as well.

PSS has more recently been used as a domain for learning im-
portant light-carrying paths during rendering. Guo et al. [GBBE18]
developed a path guiding algorithm that learns a high-dimensional
warp within PSS using a kd-tree. More closely related to our ap-
proach is the work of Müller et al. [MMR+19] and Zheng and
Zwicker [ZZ19], who apply a composition of warps to primary
samples, each of which is parameterized by a neural network and fit
using gradient descent. In contrast, we use much simpler warping
functions and fit them uniquely at each point being shaded, rather
than globally using prior paths. Our method is thus significantly
less costly, albeit with larger approximation error.

Our composition of warps is closely related to “normalizing
flows” [TV10, TT13], which represent PDFs resulting from a com-
position of warps that are applied to a base PDF. In fact, our ap-
proach is a special case of a normalizing flow: one with uniform
base PDF that approximates the product distribution of the ren-
dering integral. However, unlike many techniques relying on nor-
malizing flows [DKB14, RM15, MMR+19, ZZ19, MRNK20], we
do not use neural networks to parameterize our warps and we use
closed-form fitting routines as opposed to gradient-based update
rules.

Arvo [Arv01] presented an approach for deriving importance
sampling algorithms based on starting with a non-uniform map-
ping to the domain being sampled and then deriving the sample
warp that gives a uniform sample distribution when composed with
the original mapping. One interpretation of our approach is that we
approximately match these warps when closed-form solutions are
not available.

Subr and Arvo [SA07] and Portsmouth [Por17] described algo-
rithms for linearly interpolating sampling densities over shapes.
Our work generalizes theirs; by operating instead in PSS, we are
able to use a wider variety of sampling warps and are able to ap-
ply a series of warps in succession to account for multiple factors.
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Table 1: Notation

Symbol Definition

u Uniform n-dimensional PSS point in [0,1)n.
D General n-dimensional domain.
x Point in D.

p(x) Probability density function (PDF).
P(x) Probability measure. In 1D, the cumulative

distribution function (CDF).
w(x) Warp: a bijection from Rn to itself used to warp

samples x.
Jw Reciprocal of the absolute determinant of the Jaco-

bian matrix,
∣∣∣det

(
∂wi(x)/∂xT

)∣∣∣−1
, of a warp w.

Further, we demonstrate the value of our approach for a range of
applications.

Dupuy et al. [DHB17] introduced an approach for computing
distributions over spherical caps that can be easily sampled from
and integrated. Among other applications, they showed the appli-
cability to BSDF product sampling with spherical light sources.
Because our approach operates in PSS, it allows product sampling
with any type of area light source that has a parameterization. While
we also use an approximation to the analytically unrealizable ideal
warp, we do so within a framework of composable warps that can
be used with a wide variety of integrands.

To our knowledge, the first application of warping PSS to re-
duce variance in Monte Carlo integration was described by Booth
in the field of neutron transport [Boo86]. He describes an online
adaptation of random numbers during a simulation to increase the
probability of generating samples in regions of sample space where
the integrand’s value is relatively large. Our method uses a more
lightweight analytic approach to attack the same goal.

3. Warping Primary Sample Space

To derive our sampling and warp-fitting algorithms, we will first
formalize the effect of warps on probability distributions and then
show characteristics of theoretically ideal warps for importance
sampling a given Monte Carlo integrand. Then, we will present our
practical approximation of such an ideal warp. See Table 1 for a
summary of notation.

3.1. Background

We are interested in the effect of a warp w—which we define as
a continuous, bijective mapping—on the probability density of n-
dimensional points x ∈ Rn that are distributed according to p(x).
More precisely, we are interested in expressing the probability den-
sity pw(x′), where x′ = w(x). Multivariable calculus allows us to
express how this PDF transforms under warps via the change-of-
variables formula.

pw(x′) = p(x)
∣∣∣∣det

(
∂w(x)
∂xT

)∣∣∣∣−1

= p(x)Jw(x) , (2)

where Jw(x) :=
∣∣∣det

(
∂w(x)
∂xT

)∣∣∣−1
is the reciprocal of the absolute

determinant of the Jacobian matrix of w at x.

Note that in the more general case where the warp maps to/from
a manifold embedded in a space with different dimensionality, the
square root of the determinant of the Gram matrix would be re-
quired, but this is not the case for the warps we consider.

To make intuitive sense of the change-of-variable formula, note
that

∣∣∣det
(

∂w(x)/∂xT
)∣∣∣ describes the multiplicative change in n-

dimensional hypervolume caused by w in an infinitesimal neigh-
bourhood around x. Since p(x) is a density, with units of inverse
hypervolume, it scales by the reciprocal of the change in hypervol-
ume: namely by Jw(x).

Relation to the inversion method. Jw(x) is a generalization of the
reciprocal of the 1-dimensional derivative (dw/dx)−1, which can
be equivalently thought of as the 1-dimensional derivative of the
inverse warp dw−1/dx′. The relationship between the derivative of
the inverse warp and the sample PDF is widely known in com-
puter graphics as the “inversion method.” The change-of-variable
formula is therefore a generalization of the inversion method to
higher dimensions. What this means is that whenever we have a 1-
dimensional CDF−1-PDF pair that acts on uniform samples, there
is a 1:1 correspondence between the CDF−1 and w as well as be-
tween the PDF and Jw(x); in other words, Jw(x) can be computed
by evaluating the PDF of x′.

3.1.1. Composite Warps and their PDF

Next, we consider the effect of composing multiple warps together.
We define a composite warp as w = wm ◦· · ·◦w1. By the chain rule,
the Jacobian matrix of the composition of m warps is the product
of the Jacobian matrices of the individual warps. Applying this rule
to Equation 2 leads to

pw(xm) = p(x)

∣∣∣∣∣det

(
m

∏
i=1

∂wi(xi)

∂xiT

)∣∣∣∣∣
−1

, (3)

where xi are the intermediate values of x between warps:

x1 = x

xi = (wi−1 ◦ . . .◦w1)(x) for i≥ 2.
(4)

Since the determinant of the product of matrices is equal to the
product of their determinants, we can express Equation 3 in terms
of the Jwi of the individual warps wi:

p(x)

∣∣∣∣∣det

(
m

∏
i=1

∂wi(xi)

∂xiT

)∣∣∣∣∣
−1

= p(x)
m

∏
i=1

∣∣∣∣det
(

∂wi(xi)

∂xiT

)∣∣∣∣−1

= p(x)
m

∏
i=1

Jwi(x
i) . (5)

We use uniform samples in PSS, i.e. p(x) = 1, and therefore the
absolute value of the Jacobian determinant is itself the PDF of the
warped samples:

pw(xm) =
m

∏
i=1

Jwi(x
i) = Jw(x) . (6)
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We are interested in augmenting existing sampling techniques that
are based on the inversion method and so we assume an existing
sampling technique (e.g. BSDF sampling or uniform emitter sam-
pling) x′ = P−1

s (x) with associated PDF ps(x). We therefore set the
last warp of our composite warp to that technique, i.e. wm = P−1

s
and Jwm = ps; all earlier warps then are PSS warps that operate on
[0,1)n.

Algorithm 1 generates warped samples and computes their PDF
using Equation 6. Note that the final PDF can easily be computed
during sampling using the successive warped values of xi and the
product of Jwi values. To compute the PDF for an arbitrary value
x ∈D (for example, for multiple importance sampling), the inverse
warps w−1

i can be applied to x in reverse order, with their Jacobian
determinant values multiplied together along the way; see Algo-
rithm 2.

Note that in Algorithm 2, it is necessary to be able to invert
wm, the base sampling technique we started with. Thus, techniques
such as rejection sampling that cannot be inverted are unusable
with our method. For sampling techniques based on the inversion
method, the inverse of wm is just the collection of CDFs in each
dimensions, which are derived along with the sampling technique.
The inverses of uniform area sampling algorithms of shapes are
straightforward, but the inverses of uniform spherical sampling al-
gorithms [Arv95, UFK13] have not been previously published, to
our knowledge. We include implementations in the supplementary
material.

3.2. Optimal Warps

The Monte Carlo estimator of the integral of a function f using
warped samples f (xm)/pw(xm) achieves our goal of minimizing
variance when the PDF of the warped samples is proportional to f :

pw(xm) =
m

∏
i=1

Jwi(x
i)∝ f (xm) . (7)

Algorithm 1: General sample warping algorithm. Given m
warps wi, the warps are successively applied to a uniform PSS
sample u. The final sample value x ∈ D and its PDF are re-
turned.

pdf← 1
x← u
for i← 1tom do

x← wi(x)
pdf← pdf× Jwi(x)

end
return x,pdf

Consider the case of having one or more existing warps (e.g.,
wm = P−1

s and possibly one or more PSS warps) where we’d like
to compose an additional warp wi (to aim for being proportional to
f ). Simple algebra on Equation 7 yields the optimality condition on
wi:

Jwi(x
i)∝ f (xm)

∏ j 6=i Jw j (x j)
. (8)

Algorithm 2: Algorithm to compute the PDF of a given value
x ∈ D. Note that the order in which the PSS warps are applied
is reversed compared to their use for generating samples.

pdf← 1
for i← m to1 do

pdf← pdf× Jwi(x)
x← w−1

i (x)
end
return pdf

Thus, an additional i-th warp—which can be inserted into the chain
of warps at any position i—can, theoretically, perfectly correct any
remaining discrepancy w.r.t. f by having the right inverse Jacobian
determinant.

In practice, perfectly correcting all remaining discrepancy is usu-
ally impossible, but one can take smaller steps. For example, if pre-
existing warps cover some factors of f , such as the BSDF in the
rendering equation, then additional warps can be introduced for the
remaining factors—e.g. the foreshortening term.

3.3. Fitting Warping Functions

We focus on fitting customized warping functions from scratch at
each point being shaded: doing so eliminates the need to maintain
additional data structures and avoids the complexity and compu-
tational expense of on-line learning during rendering. In turn, we
must use warping functions that can be efficiently fit and evaluated.
Because time spent on fitting and evaluating warps could instead be
used to take more samples without warping, warping must be more
efficient overall to be worthwhile.

It is often useful to fit an approximation to the right-hand side of
Equation 8, for example neglecting expensive factors (such as vis-
ibility) or using approximations (for example, to the BSDF.) Fur-
thermore, if we know that a factor g of f isn’t accounted for by any
of the existing warps, we can directly fit Jwi(xi)∝ g(xm).

Although it may seem wise to incorporate all of the factors in the
right-hand side of Equation 8 when fitting a warp, we have found
the best results by limiting each warp to have responsibility for just
part of the overall function f . We believe that because the warping
functions we use have limited expressive power, their fits may be
made worse if they also try to include the residual errors from other
warps.

To make fitting as simple as possible, we directly approximate
the optimal inverse Jacobian determinant (the right-hand side of
Equation 8) up to a constant factor rather than attempting to de-
rive a good warp in a single step. This idea is similar to that em-
ployed by Müller et al.’s piecewise-polynomial warps [MMR+19].
We use simple parametric functions that admit closed-form inte-
grals, which allows us to normalize them and obtain their inverse
Jacobian determinant, as well as to apply the inversion method to
find a corresponding warp; these functions are summarized in Ta-
ble 2. The simplest, a bilinear function, is defined by 2× 2 values
at the corners of the parametric domain. The biquadratic Bézier is
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Table 2: 2D functions a(x) that we used to fit PSS product factors.

a(x) Parameters

Bilinear g(x1,g(x2,v0,0,v1,0),
g(x2,v0,1,v1,1)),

with g(x,c0,c1) = (1− x)c0 + xc1.

vi, j

Biquadratic
Bézier

b(x1,b(x2,v0,0,v1,0,v2,0),
b(x2,v0,1,v1,1,v2,1),
b(x2,v0,2,v1,2,v2,2)),

with b(x,c0,c1,c2) =

(1− x)2c0 +2(1− x)xc1 + x2c2.

vi, j

more expressive with 3×3 control points, but requires solving two
cubic equations to apply the warp.

Given f̂ that represents either the right hand side of Equation 8,or
some approximation of it, we fit the approximation functions a(x)
via point-wise evaluation of f̂ at the corresponding PSS points for
their parameters. If we are fitting a warp wi, then for each warp
parameter v, we take the corresponding PSS point u, compute the
corresponding xm ∈D by applying the subsequent warps, and eval-
uate f̂ :

vi, j←− f̂ (xm) = f̂
(
(wm ◦ · · · ◦wi+1)(u)

)
. (9)

As an example, consider using a bilinear function in PSS to ap-
proximate for the cosine term for direct lighting from a triangular
light source, where Arvo’s uniform triangle solid angle sampling
algorithm is being used: w1 is the warp to fit, and w2 applies Arvo’s
approach. The parameters vi, j lie at the corners of PSS—(0,0),
(0,1), (1,0), and (1,1)—and w2 maps those four PSS values to
the three vertices of the triangle, with two PSS corners mapped to
one triangle vertex. In turn, the values of the cosine factor at the
corresponding triangle vertices give the weights vi, j for the bilinear
approximation function.

More generally, if multiple PSS warps are used, PSS points at
which we evaluate f̂ must be warped by all subsequent, already
specified warps to find xm, as shown in Equation 9.

Each of our approximation functions can be normalized over
[0,1)2 to obtain its corresponding inverse Jacobian determinant Jw.
Corresponding warps and inverse warps can then be found directly.
In 1D, given Jw, the warp can be found using the inversion method:
integrate Jw and then invert the result. For a multi-dimensional
warp, an infinite number of warps can have Jw. In that case, we
only need a single valid warp, which can be derived by marginal-
izing over all of the dimensions except one and applying the in-
version method to find a 1D warp in that dimension. After apply-
ing this newfound warp along the chosen dimension, the warp over
the remaining dimensions can be found recursively by the same ap-
proach, ignoring all previously warped dimensions, until all dimen-
sions have been warped. Warps, inverse warps, and inverse Jaco-
bian determinants Jw for our parametric functions are summarized
in Table 3.

4. Results

We have applied PSS warps to three direct lighting problems:
cosine-weighted solid angle sampling of light sources, uniform area
sampling of bilinear patches, and sampling the product of BSDFs
and light sources. Our experiments were performed with a modi-
fied version of the pbrt renderer [PJH16], which is included in the
supplemental material. All images were rendered with one sample
per pixel using multiple importance sampling with one light sam-
ple and one BSDF sample. In the following, we used Celarek et
al.’s approach to compute robust estimates of MSE and its per-pixel
variance [CJWL19]. We use Monte Carlo efficiency, one over the
product of MSE and running time, to compare techniques.

4.1. Cosine-Weighted Solid Angle Sampling

When estimating direct illumination from emissive geometry with
Monte Carlo integration, it is more efficient to uniformly sample
the solid angle subtended by the emitter than to uniformly sam-
ple its surface area [Arv95, UFK13, Gam16, TWCC06]. Doing so
eliminates variation in the integrand due to the inverse squared dis-
tance factor and the cosine between the light’s normal vector and
the outgoing light direction, which in turn reduces variance. Bet-
ter is to also incorporate the cosine of the incident direction at the
shading point into the sampling distribution. Although there has
been progress in doing so for spherical lights [UnG18, PD19], it
has remained challenging for other shapes, requiring numerical in-
version of CDFs [Arv01] or adaptive refinement algorithms that
are not based on a warping and thus cannot make use of stratified
or low-discrepancy sample points to reduce variance [Un00].

We have applied PSS warps to incorporate this additional co-
sine factor, transforming it into PSS and fitting a warp to approxi-
mate the cosine, as described in Section 3.3. Figure 2 shows a scene
where PSS warps were used to account for the cosine factor of a tri-
angular light source sampled using Arvo’s algorithm [Arv95]. Us-
ing a bilinear warp for the incident cosine factor reduces MSE by
a factor of 1.75× compared to uniform solid angle sampling, and a
biquadratic warp gives a 1.91×MSE improvement. The respective
increases in run time are 1% and 6%.

We implemented Arvo’s method for cosine weighted solid an-
gle sampling [Arv01], which requires numerical inversion of the
CDF; we used six iterations of bisection, which we found to be
faster and more stable than both Newton-Raphson and Arvo’s cu-
bic approximation. This method is optimal for a diffuse BRDF if
visibility is not considered in the sample distribution. For the scene
in Figure 2, Arvo’s method gives 3.8× lower error than uniform
solid angle sampling with a relative run time cost of 1.24×. Error
is 1.5× less than with our bilinear warp, at a cost of an increase of
1.21× in rendering time; efficiency is thus 1.28× that of our linear
warp approximation. Our implementation of Arvo’s algorithm re-
quires the evaluation of over 100 transcendental functions for each
sample generated and uses 17× more time than our bilinear warp.

We have also measured the effectiveness of approximate cosine-
weighted sampling with more complex scenes and saw error reduc-
tions of 1.25× to 1.48×. Those results are presented in Section 4.3
along with results for approximate BSDF product warp sampling.
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Table 3: The associated warps w(x), inverse warps w−1(x), and inverse Jacobian determinants Jw(x) for the fitting functions a(x) in Table 2.
(Note: the auxiliary functions g and b used below are defined in Table 2.)

Warp w(x) w−1(x) Jw(x)

Bilinear x′2 = h(x2,v0,0 + v1,0,v0,1 + v1,1)
x′1 = h(u1,g(x′2,v0,0,v0,1),g(x′2,v1,0,v1,1))

with h(x,a,b) = a−
√

g(x,a2,b2)
a−b .

x′0 = l(x0,g(x1,v0,0,v0,1),
g(x1,v1,0,v1,1))

x′1 = l(x1,v0,0 + v1,0,v0,1 + v1,1)

with l(x,a,b) = x(a(2−x)+bx)
a+b

4a(x)
∑i, j vi, j

Biquadratic
Bézier

Solve B(x′2,∑i vi,0,∑i vi,1,∑i vi,2)−x2 = 0 for x′2,

where B(x,a,b,c) = (a−2b+c)x3+(3b−3a)x2+3ax
a+b+c

Solve B(x′1,c0,c1,c2)−x1 = 0 for x′1,
where ci = b(x′2,vi,0,vi,1,vi,2).

x′0 = B(x0,b(x1,v0,0,v1,0,v2,0),
b(x1,v0,1,v1,1,v2,1),
b(x1,v0,2,v1,2,v2,2))
x′1 = B(x1,c0,c1,c2)

where ci =
1
3 ∑i vi, j

9a(x)
∑i, j vi, j
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Figure 2: Close-ups of triangular light test scene, rendered with one sample per pixel and multiple importance sampling using one light
sample and one BSDF sample.

4.2. Sampling Bilinear Patches

With the recent development of an efficient ray—bilinear patch in-
tersection algorithm [Res19], bilinear patches are an increasingly-
appealing primitive for ray tracing. We have applied PSS warps
both to uniform area sampling of bilinear patches as well as to ap-
proximate cosine-weighted sampling of them.

A bilinear patch can be defined in parametric form over [0,1)2

given four points p0,0, p1,0, p0,1, and p1,1 as

f (u,v) = (1−u)(1−v)p0,0 +u(1−v)p1,0 +(1−u)vp0,1 +uvp1,1.

In order to generate uniform samples with respect to area on such
a patch, points should be sampled with probability proportional to∣∣∣∣∣∣∣∣∂ f (u,v)

∂u
× ∂ f (u,v)

∂v

∣∣∣∣∣∣∣∣ , (10)

where × denotes the cross product and ||n|| is the length of the

vector n. While the partial derivatives of a bilinear patch are eas-
ily computed, the integral of Equation 10 over the patch cannot
be solved in closed form, which precludes deriving a closed-form
equi-area sampling method.

The best current area sampling approach is to sample uniformly
in (u,v). The PDF of a sample is then

p(u,v) = 1/ ||∂ f (u,v)/∂u×∂ f (u,v)/∂v|| . (11)

For patches where two vertices are relatively close together, uni-
form parametric sampling places too many samples near those ver-
tices. In turn, those samples’ PDF values are much larger than sam-
ples near the other two vertices, leading to higher variance.

Applying Equation 8, we can see that the ideal PSS warp would
cancel out Equation 11’s factor. The first two images in Figure 3
show a test scene rendered with uniform parametric sampling and
approximate equi-area sampling with a bilinear warp and numeric
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Figure 3: Scene with an emissive bilinear patch, rendered with (left) uniform parametric sampling, (middle) approximate uniform area
sampling using a bilinear warp, and (right) approximate cosine-weighted solid angle sampling using a composition of three PSS warps.

Table 4: Comparison of PSS warp-based sampling techniques to
uniform parametric sampling for the scene in Figure 3. All images
were rendered using MIS.

Sampling method
MSE
factor

Time
Efficiency

factor
Uniform parametric 1 1 1
Bilinear approx. area 0.373 1.01 2.66
Biquadratic approx. area 0.370 1.02 2.64
Three-warp approx. cosine 0.151 1.23 5.38

results are shown in Table 4. MSE is reduced by 2.70× and, thanks
to the negligible computational overhead, efficiency is improved by
2.66×. We saw only marginal benefit from a biquadratic warp over
a bilinear warp.

Arvo and Novins showed that for a planar quadrilateral, a bilin-
ear warping gives uniformly-distributed points [AN07]. Our bilin-
ear warp also gives exact equi-areal sampling in that case, while
still working well for the more general case of bilinear patches.

Although approximate equi-area sampling is much better than
uniform parametric sampling, it is further desirable to approximate
cosine-weighted solid angle sampling when computing direct illu-
mination. To do so, four factors must be accounted for: the non-
uniformity of the patch parameterization, the inverse squared dis-
tance factor, and the cosine factors at the light source and receiving
point.

We found that trying to encode the product of all of these into
a single warp was ineffective, even with a biquadratic warp. Doing
so gave worse results than just using approximate equi-area sam-
pling. In practice these terms are mostly uncorrelated, so it is not
surprising that a single simple warp does not have the capacity to
encode their variation.

Therefore, we considered multi-stage PSS warping approaches.
We found that the inverse squared distance and light source’s cosine
term are generally closely correlated so encoded them in a single

warp. The other two factors were warped independently in the fol-
lowing sequence:

• A bilinear warp to approximate equi-area sampling.
• A biquadratic warp that encodes the product of inverse squared

distance and cosine at the light
• A biquadratic warp that accounts for the cosine at the illuminated

point.

That approach incurred a 23% performance cost, with error almost
as good as using four biquadratic warps.

The rightmost image in Figure 3 shows a renderings of the scene
using this approach, and Table 4 compares MSE improvement, run-
time, and Monte Carlo efficiency. Accounting for the cosine and in-
verse squared distance terms gives a substantial additional improve-
ment in regions where those factors are important. Even though us-
ing one bilinear and two biquadratic warps increases running time
by 23%, the 6.62× reduction in MSE it gives makes it the most
efficient approach for this scene.

4.3. BSDF Product Warp Sampling

We have also applied PSS warps to BSDF-weighted light source
sampling, fitting Jw to approximate the BSDF and the cosine term.
We investigated both bilinear and biquadratic Jacobian fitting func-
tions and measured results using both uniform area sampling and
uniform solid angle sampling for the warp from PSS to the light
source. Because these scenes include highly specular surfaces with
bright highlights, we use mean relative squared error (MRSE) for
all results in this section so that relatively small errors in bright
pixels do not dominate the results.

We used three scenes with quadrilateral light sources to evaluate
this approach for more complex scenes. Table 5 shows numeric re-
sults and Figure 4 shows cropped regions of images of the kitchen
scene. The supplemental material includes raw MRSE images and
similar visualizations for all three scenes as well as images ren-
dered at low sampling rates. With these scenes, our approach gives
as much as a 1.67× improvement in efficiency. The biquadratic
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Uniform Solid Angle BSDF Biquadratic (Area) BSDF Exhaustive (Area)

MRSE improvement 1× 1.40× 1.43×

MRSE improvement 1× 1.52× 2.30×

MRSE improvement 1× 2.38× 2.38×

Figure 4: The effectiveness of various sampling techniques in different parts of the kitchen scene, at 16 samples per pixel. All results use
MIS with a second sample taken based on the BSDF. In the left column is a fully resolved reference image. Middle, uniform solid angle
light sampling, and BSDF-weighted light sampling using a biquadratic warp. Right, an exhaustive light sampling algorithm that computes
a custom sampling distribution at each pixel, to estimate the best possible improvement of any sampling algorithm. MRSE improvement is
measured relative to uniform solid angle sampling.

warp was the most effective at reducing MRSE, but the bilinear
warp did surprisingly well and had the best overall efficiency, given
that it only added 3–6% to the overall runtime.

The benefits of approximate BSDF product sampling vary across
the images; specular highlights due to the specular peak are han-
dled well with regular BSDF sampling, and diffuse regions are
handled well by approximate cosine-weighted solid angle sampling
alone. However, approximate BSDF product sampling significantly
reduces error in regions like the TV screen in the living room scene

and by the metal backsplash behind the stove in the kitchen scene,
where it improves by 2.85×.

Most of the remaining error in these scenes is in pixels where
the light source is partially occluded. It is also evident that using
uniform area sampling for the final warp works better in some ar-
eas than uniform solid angle sampling, and vice versa. For exam-
ple, both the kitchen and living room scene have higher error on
the ceiling near the window when uniform solid angle sampling is
used; the kitchen scene has lower error above the microwave with
uniform solid angle sampling. While solid angle sampling works
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Table 5: Improvement in MRSE and efficiency with cosine warp sampling and BSDF product warp sampling with both a uniform solid angle
warp and a uniform area warp for the final warp, compared to uniform solid angle sampling for several complex scenes. Multiple importance
sampling was used for all cases.

Solid Angle Warp Area Warp

Scene Sampling Method MRSE Time Efficiency MRSE Time Efficiency

Cosine Bilinear Warp 0.780 1.02 1.26 — — —
BSDF Product Bilinear Warp 0.796 1.04 1.21 0.600 1.00 1.67
BSDF Product Biquadratic Warp 0.804 1.11 1.12 0.597 1.07 1.57
BSDF Product Reference 0.760 — — 0.565 — —

Cosine Bilinear Warp 0.797 1.03 1.22 — — —
BSDF Product Bilinear Warp 0.676 1.06 1.40 0.598 1.03 1.62
BSDF Product Biquadratic Warp 0.704 1.09 1.30 0.591 1.06 1.60
BSDF Product Reference 0.628 — — 0.600 — —

Cosine Bilinear Warp 0.838 1.01 1.18 — — —
BSDF Product Bilinear Warp 0.816 1.03 1.19 0.770 1.01 1.29
BSDF Product Biquadratic Warp 0.838 1.10 1.08 0.763 1.06 1.24
BSDF Product Reference 0.802 — — 0.732 — —

well for unoccluded lights, if the seemingly important part of the
light is actually occluded, more samples will have no contribution
and error will increase.

To measure how close our sampling method is to an exact prod-
uct sampling scheme, we compared to reference BSDF product
sampling where, at each point being shaded, we evaluated the
BSDF and cosine term at 32× 32 points on the light source and
used those values to build a tabularized distribution to use for sam-
pling points on the light. As expected, when we use the reference
BSDF product method, error is nearly zero if the light source is
unoccluded, but error remains where the light is partially visible.

For these scenes, our approximate bilinear warp provides much
of the benefit of exact product sampling; for some scenes, our ap-
proach has slightly lower error. The per-pixel MSE variance im-
ages help explain this surprising result: in regions where the light
is partially occluded, exact BSDF product sampling algorithm con-
centrates samples in a part of the light that is not visible; note, for
example, the right side of the cabinets in the kitchen scene.

4.4. Discussion

The warps we have considered in this work are efficient but
are less expressive than more complex alternatives could be.
Richer warping functions could be more effective, especially if
combined with reusing warp fits at nearby points in the scene.
For example, the warps in “normalizing flows” [TV10, TT13]
gain their richness by being parameterized using neural net-
works [DKB14, RM15] and by being optimized from re-used sam-
ples [ZZ19, MMR+19, MRNK20]. In future work, one may at-
tempt to import the gradient-based sample re-use and/or alternative
warping functions into our framework.

Our PSS warping approach also implicitly assumes that the final

warp to D is not discontinuous. If this is not the case, PSS warp-
ing is likely to be ineffective. More generally, because our fitting
algorithm is based on point-wise evaluation at a small number of
points in PSS, it can make no guarantees about the overall quality
of the resulting fit. For example, consider sampling a textured light
source where the final warp samples a point on the light accord-
ing to its emitted radiance and where emission is concentrated in
a small region of the light. Variance will increase if a PSS warp
tries to account for the incident cosine; PSS points near the corners
may be warped far across the surface of the light source, potentially
causing them to have a much higher cosine factor than expected by
the PSS warp’s Jwi function.

5. Conclusion

We have presented a framework for approaching importance sam-
pling by reasoning in terms of simple component warps in the PSS.
We have shown the value of this approach for a variety of problems
in Monte Carlo ray tracing, with efficiency gains of over 1.6× for
realistic scenes. The approach has minimal computational overhead
and is easily integrated into standard Monte Carlo ray tracers; it is
probably not a coincidence that modularizing the algebra of impor-
tance sampling to “black box” simple transforms in the PSS leads
to natural modularization in the software realization.

Future work includes finding simpler component warps to add to
the toolbox of our warps, e.g., an oriented “bump” that still allows
stratification, more automated ways of assembling warps in series
to approach particular integration problems, and applying the tech-
niques we have presented to other Monte Carlo problems.
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