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Offline Rendering 5 Years Ago

Shrek (PDI/Dreamworks)



Interactive 5 Years Ago

Quake 3 (id Software)



Modern Offline Rendering

Madagascar (PDI/Dreamworks)



Modern Interactive Rendering

The Getaway 3 (SCEE)



Modern Offline Rendering

Starship Troopers (Tippett Studio)



Modern Interactive Rendering

I-8 (Insomniac Games)



Are the offline images 1,000,000 times better than the

interactive ones?



What’s Happened in 5 Years?

• The remarkable story of modern graphics processing units

– GPUs have taken much better advantage of semiconductor

trends than CPUs

– Consistent > Moore’s law performance growth, no signs of

slowing down

• Interplay of GPU capabilities and software R&D

– New graphics algorithms invented that use GPU optimally

– Few approaches from offline have been useful for interactive

– → Offline-quality doesn’t necessitate using the old offline

algorithms



Overview

• Technology trends and graphics hardware

• Characteristics of the two types of rendering

• What factors contribute to the 1,000,000x perf. difference?

– How efficiently does offline use the CPU?

– How is innovation in interactive rendering algorithms

improving image quality?

- Hardware’s impact on software and algorithms

• Open challenges and the impact of future architectures



Technology Trends And Graphics Hardware

Project Gotham Racing 3 (Bizarre Creations)



The Basic Hardware Graphics Pipeline
Modern Graphics PipelineModern Graphics Pipeline

Application

Geometry

Rasterization

Texture

Fragment

Display

Command



The Basic Hardware Graphics Pipeline

GeometryGeometry

Evaluation of polynomials for curved surfacesEvaluation of polynomials for curved surfaces

Transform and projection (object -> image space)Transform and projection (object -> image space)

T

Object-space triangles Screen-space lit triangles



The Basic Hardware Graphics Pipeline

RasterizationRasterization

Setup (per-triangle)Setup (per-triangle)

Sampling (triangle = {fragments})Sampling (triangle = {fragments})

Screen-space triangles Fragments



The Basic Hardware Graphics Pipeline
FragmentFragment

Fragments Framebuffer Pixels



The Programmable Hardware Graphics Pipeline
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GPU Architecture

• Highly parallel

• Efficient triangle rasterization

• Separate programmable vertex and pixel processing

– 32-bit floating point math

– ADD, MUL, RCP, CALL, RET, ...

– Arbitrary memory reads. Writes limited.

– Wasn’t programmable at all in 1999!



GPU Architecture

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 5

Highly parallel, single chip architecture

22   Programmable Cores

152 FP32 mult/add units

22   rcp/sqrt units

32   GB/sec memory BW

GeForce 6800GeForce 6800

L2 Tex

Memory

Partition

Command and Data Fetch

Triangle Setup, Rasterizer

Shader Thread Dispatch

Fragment Crossbar

Memory

Partition

Memory

Partition

Memory

Partition

Z-Cull

(Bill Mark and Henry Morteon)



GPU Parallelism

• Task, data, and instruction parallelism all used

• 8 vertex processors, 24 pixel on GeForce 7800

• Vertex

– 5 FLOPs per clock per processor

– MIMD

• Pixel

– 8-12 FLOPs per clock per processor

– SIMD



GPU Memory System

• Specialized for streaming linear access

• Arbitrary writes (mostly) not allowed

– Avoids ordering problems from parallel execution

• Impact of memory latency well-hidden

– This makes peak perf. easier to get than on a CPU



Good News and Not Enough Good News...

• Transistor density (Moore’s law, 50%/yr)

• Clock speed (15%/yr)

– Together these give +71% per year capability

– a.k.a. 15x in 5 years.

• DRAM bandwidth increasing at 25% year

• DRAM latency decreasing at 5% year



Implications for CPUs and GPUs

(John Owens, UC Davis)



What Do You Get In a $400 GPU?

• Computation: peak ˜150 GFLOPS

• Memory architecture

– 256MB local memory

– ˜24GB/s to local mem

– 1-2 GB/s to system mem



Compute/Bandwidth on Modern GPUs

• FLOPs per word of off-chip bandwidth

– 2002: 2

– 2003: 2.66

– 2004: 6

– 2005: 10

• It’s easy to be b/w limited...



Characteristics Of The Two Types of Rendering

Formula One Racing (SCEE)



Rendering As Data Compression

• Start with multi-GB scene description

• Do a significant amount of computation

• Generate a few million RGB pixels (few MB of output)

• How much pre-processing work is worthwhile to speed up

computation?



Offline Rendering

• Pre-rendered images

– Hours per image, no problem

• Generally passive viewer

• Movies, TV, etc.

• Almost completely done on CPUs

– Flexibility is most important

– Director is king; may make significant changes late in the

process

– May tweak a character, textures, etc., from shot to shot



The Offline Rendering Problem

• Goals: high quality (“perfect”) images

• Throughput generally more important than latency

• Render a handful of times until happy with results

• Then put it on film and you’re done



Offline Rendering: Implications

• Scene description can be as complex as necessary

– Add detail as much as needed to achieve look

• Slow frame causes artists/TDs pain, doesn’t matter to

consumer

• Optimizing the pipeline has limited benefit: cost/benefit ratio

is different than for interactive



The Interactive Rendering Problem

• Latency is the only thing that matters

– Slow frame is unacceptable: avg of 60 fps doesn’t matter if

sometimes it’s 2 fps

• Almost entirely using graphics processors (GPUs)

• Render billions of times

• Harder than offline:

– User moves the camera (subject to constraints)

– World is dynamic/can be changed by the user



Interactive Rendering: Implications

• Scene descriptions are necessarily efficient

• Frame to frame coherence is taken advantage of

• Time spent on precomputation/scene optimization can be

amortized over billions of renderings

• Very important to find ways to use the GPU efficiently



How Efficiently Does Offline Rendering Use the
CPU?

Resident Evil 5 (Capcom)



Offline Efficiency of CPU Use

• Guesstimates based on Pellacini et al. 2005, “LPICS: A Hybrid

Hardware-Accelerated Relighting Engine for Computer

Cinematography”

• Video frame 4h9m for 216k pixels

• 13.7M shading calculations (63/pixel!)

• Assuming:

– Avg. 100k executed shading instructions

– 90% of time spent on shading

– 4:1 CPU instruction per shading instruction

• → 6 TFLOPs to render image



Offline Efficiency of CPU Use

• 6 TFLOPs to render image

• In 4h9m, CPU can do 179 TFLOPs

• → CPU utilization of 3.3%

– Waiting for data from memory, disk

– Software overhead in return for flexibility



Offline Efficiency of CPU Use

• 30x from poor CPU utilization

• 10x from GPU FLOPS / CPU FLOPS

– ˜40x next-gen console FLOPS / GPU FLOPS

• < half the 1M difference

• Still another factor of 1000-3000x to account for

– Some due to image quality difference

– Some due to more efficient algorithms in interactive



How Is Innovation in Interactive Rendering
Algorithms Improving Image Quality?

S.T.A.L.K.E.R. (GSC Game World)



Three Big Contributing Factors

• GPU performance cliffs are large

– Must stay close to GPU fast path

– Easier to achieve good GPU utilization than good CPU

utilization?

• The benefits from staying on the GPU fast path are enormous

• Everyone has a GPU

– Many more developers working on interactive algorithms

– Millions of GPUs in PCs → larger incentive to use efficiently



How To Be GPU-Friendly

• Move per-vertex work to per-pixel if doing so makes triangles

bigger / reduces the number of vertices substantially

• Pre-process now for faster rendering later

– Visibility / potentially visible sets

– Model simplification / optimization

– Precomputed radiance transfer

• Examples

– Displacement mapping

– Billboards

– Mesh simplification

– Ambient occlusion



Displacement Mapping

• Classic technique from offline for adding fine detail to surfaces

• Texture map defines offset from base surface

• Offline approach:

– Finely tessellate to pixel-sized triangles

– Move triangle vertices appropriately

– Aggressively discard triangles when done with them



Displacement Mapping

(Ivan Neulander, Rhythm and Hues Studios)



Displacement Mapping

• Offline approach not at all suited to current hardware:

– GPU is balanced for ˜8 pixel big triangles

– Not enough vertex processing power for many small triangles

– Very small triangles cause poor utilization throughout the

pipeline

• Therefore, invent new techniques that give the same effect but

are better suited to the hardware



Displacement Mapping

• GPU has much more pixel processing power than vertex

• Very small triangles are bad all around

• → draw bigger triangles, but do work in pixel processor to

compute effect of displacement

• Representative approach: Donnelly’s distance map-based ray

tracing



Distance Map-Based Sphere Tracing

It is worth noting that distance functions do not apply only to height fields. In fact, a
distance map can represent arbitrary voxelized data. This means that it would be possi-
ble to render small-scale detail with complex topology. For example, chain mail could
be rendered in this manner.

8.3.1 Arbitrary Meshes
Up to this point, we have discussed applying distance mapping only to planes. We
would like to apply distance mapping to general meshes. We do so by assuming the
surface is locally planar. Based on this assumption, we can perform the same calcula-
tions as in the planar case, using the local tangent frame of the surface. We use the local
surface tangents to transform the view vector into tangent space, just as we would
transform the light vector for tangent space normal mapping. Once we have trans-
formed the viewing ray into tangent space, the algorithm proceeds exactly as in the
planar case.

Now that we know how to use a distance map for ray tracing, we need to know how to
efficiently compute a distance map for an arbitrary height field.

8.3 The Distance-Mapping Algorithm 129

FFiigguurree  88--55.. Sphere Tracing
A ray begins at point p0. We then determine the distance to the closest point on the surface.
Geometrically we can imagine expanding a sphere S0 around p0 until it intersects the surface.
Point p1 is then the intersection between the ray and the sphere. We repeat this process,
generating points p2..p4. We can see from the diagram that point p4 is effectively the intersection
point with the surface, and so in this case the algorithm has converged in four iterations.

108_gems2_ch08_new.qxp  1/25/2005  12:03 PM  Page 129 SECOND PROOFS



Bump Mapping

124 Chapter 8 Per-Pixel Displacement Mapping with Distance Functions

Figure 8-1. A Displaced Stone Surface
Displacement mapping (top) gives an illusion of depth not possible with bump mapping alone
(bottom).
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Displacement Mapping

124 Chapter 8 Per-Pixel Displacement Mapping with Distance Functions

Figure 8-1. A Displaced Stone Surface
Displacement mapping (top) gives an illusion of depth not possible with bump mapping alone
(bottom).
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(William Donnelly)



How Do You Render A Forest Full of Trees?

• Desired scene complexity is growing faster than image

resolution

• Offline: model each tree down to the leaves, even the trees

that are a mile away

– “Wow, how come the renderer is so slow?”

• The above was a slight exaggeration

– When sufficiently painful, will also model simpler trees for

the distance, use billboard impostors

– This incurs cost that must be worthwhile in the grand

scheme of things



How Do You Render A Forest Full of Trees?

• Interactive: pain threshold is much lower than offline

→ much quicker to go to more efficient representations

– Similar issues with very small triangles and bad GPU

utilization

– How can you draw complex objects in a way suited to the

GPU?

– And by the way, dynamic lighting would be nice as well

• More sophisticated billboard representations

– Small pre-processing cost, significant benefits

– Represent the model in a way that is friendly to GPU



Billboard CloudsBehrendt et al. / Realistic real-time rendering of landscapes

(a) (b) (c) (d)

Figure 1: Tree approximation: a) original model; b) billboard approximation using k-means algorithm; c) approximation using
improved clustering and hierarchical model information; d) other approximations of plants using billboards.

this procedure results in a nearly even distributed point set
in which only weak clustering appears.

2.1. Clustering

We modified the idea of Decoret et al. and applied a cluster-
ing algorithm directly to the vertices of the triangles that con-
stitute the tree model. Each of the clusters is then represented
by one or more billboards in dependency of the form of the
respective point cloud. The number of clusters can be spec-
ified by the user to control the rough number of billboards
generated by the algorithm. We normally use 50− 200 bill-
boards for trees and 20− 100 billboards for smaller plants,
depending on the size and complexity of the plant. In Fig.
1(a)-(c) a tree geometry is shown together with two billboard
approximations.

Using the standard k-means clustering [Fuk90], a subop-
timal set of billboards is produced. Especially for the trunk
and the tree skeleton, visual artifacts can be seen. This is
due to the clustering that does not take into account any
model-specific characteristics. Besides k-means, the isodata
algorithm is often used for clustering [BH65]. In contrast to
the k-means approach, here clusters are dynamically split or
merged due to their size.

The best result can be achieved, if knowledge of the model
is available. In our approach, we receive the triangles of
the geometric description in a hierarchical form. All trian-
gles that belong to one branch including its sub-branches,
subsequently are stored in the file. We distinguish between
branches and leaves by analyzing the texture information,
more precisely the color and the ratio of transparent and

opaque texels on the triangles. This allows us to use geomet-
ric descriptions of plants delivered by a number of modelling
tools.

Using this information, the clusters can be oriented along
the branches of the tree, which yields visually pleasing re-
sults. In Fig. 1(a)-(c) a flimsy tree is shown in order that
all billboards can be seen. The user can specify a branching
level, so that each sub-branch of that level forms a cluster.
This gives often visually pleasing results as seen in Fig 1(c).
In that case the second level was chosen.

In Fig. 1(d) two other models are shown. Also in these
cases the algorithm finds good representations, even though
the structural desription of the models is different.

The clustering can also be applied to sets of plants. In this
case, a much coarser representation is produced; however,
it can be used in the background of the scenes. This helps
reducing the overall number of elements, which have to be
rendered for a complex scene. Alternatively, we use shell
textures to represent larger parts of the scene in the back-
ground (see Sec. 3).

2.2. Visual Representation of Clusters

To determine the form of a cluster that should be represented
by billboards, an oriented bounding box is generated. Find-
ing an appropriate box is not easy. In our experiments we
first tried to work with a regression plane to which all points
have a minimal squared distance. The plane then served as a
basis for the bounding box. Unfortunately, the results are of-
ten visually not optimal. An attempt to use eigenvectors also

c© The Eurographics Association and Blackwell Publishing 2005.

Behrendt et al.



Billboard Clouds

Behrendt et al. / Realistic real-time rendering of landscapes

Figure 5: Upper row: polygonal tree (126,000 triangles), lower row: approximation by 60 Billboards with lighting.

Figure 6: Level-of-Detail of a model on the basis of illuminated billboards. The representation is blended between two and 60
billboards.

Figure 7: A complex scene under different lighting conditions.

c© The Eurographics Association and Blackwell Publishing 2005.

Behrendt et al.



How Do You Render a 2M Polygon Character?

• Offline: draw 2M polygons

• Interactive: No thanks! Can we simplify without losing detail?

Unreal Engine 3 (Epic Games)



How Do You Render a 2M Polygon Character?

Unreal Engine 3 (Epic Games)



How Do You Render a 2M Polygon Character?

Unreal Engine 3 (Epic Games)



5,287 Triangles Is Much Nicer

Unreal Engine 3 (Epic Games)



Ambient Occlusion

• Technique pioneered by ILM

• Observation: for static model, precompute how exposed to the

environment each vertex is

• This value is very useful for shading–makes crevices dark, etc.



Ambient Occlusion

224

face. Light is emitted and reflected from the front-facing side. Light is transmitted and
shadows are cast from the back. We create one element per vertex of the mesh. Assum-
ing that the vertices are defined with a position and normal already, we just need to
calculate the area of each element. We calculate the area at a vertex as the sum of one-
third of the area of the triangles that share the vertex (or one-fourth of the area for
quads). Heron’s formula for the area of a triangle with sides of length a, b, and c is: 

Chapter 14 Dynamic Ambient Occlusion and Indirect Lighting

Figure 14-1. Adding Realism with Ambient Occlusion and Indirect Lighting
The scene on the left uses only environment lighting and looks very flat. The middle scene adds
soft shadows using ambient occlusion. The scene on the right adds indirect lighting for an extra
level of realism.

Figure 14-2. Converting a Polygonal Mesh to Elements
Left: A portion of a polygonal mesh. Right: The mesh represented as disk-shaped elements.
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Bunnell



Ambient Occlusion

• Offline approach

– Compute these values in a preprocess

– Look them up at render-time

• Directly applicable to interactive

• But what if the model is animated?



Represent Mesh With Oriented Disks
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Dynamic Ambient Occlusion

• Represent mesh with oriented disks

• Build tree to represent them hierarchically

– Far away groups of disks can be merged into a single disk,

etc.

• At each point to shade, traverse tree, adaptive termination

– This is easy to do on a GPU pixel processor

• Result: interactive dynamic ambient occlusion



Ambient Occlusion

• Weaknesses: not 100% accurate

• But it does look right, and works well in practice...

• And it’s interactive!



The Good News For Interactive Rendering

• The complexity found in offline scenes is not a prerequisite to

images of offline quality

– Number of objects, shaders, textures, etc, only tangentially

relevant

• Offline has long claimed the pain they go through is necessary

for high-quality images

– This is demonstrably wrong

– “Toy Story”-quality will be (has been?) rendered in real time

with far fewer FLOPs than were used to render it originally



Open Challenges and Future Architectures

S.T.A.L.K.E.R. (GSC Game World) /

The Courtyard House (Henrik Wann Jensen)



Open Problems in Interactive Rendering

• Solved already in offline

– No more visible polygons (curved surfaces should look

curved)

– Good transparency solution

– Anti-aliasing

• Not yet completely solved anywhere

– Infinitely detailed environments

– Dynamic lighting in dynamic environments



GPGPU For Graphics

• “General purpose computation on GPUs”

• GPUs have many FLOPs → use them for numerical

computation

• Many techniques for abusing the GPU to apply those FLOPs

to non-graphics problems

• (See gpgpu.org)



GPGPU For Graphics

• GPU as data parallel processor

• Memory system designed to stream through data

– Not so good for data reuse though

• GPGPU application areas

– Protein folding

– FFT, matrix computation

– ...



GPGPU For Graphics

• Can use approaches from GPGPU to do different types of

graphics on GPU

• Not limited to rasterizing triangles, GPU z-buffer approach

• Purcell et al’s and Carr et al’s GPU ray tracing, ...

• Rapid improvement in GPU capabilities makes this increasingly

appealing



Upcoming Console Architectures

• PlayStation 3 (Cell + RSX)

• XBox 360 (Multicore PPC + GPU)

• 100s of GFLOPs on both CPU and GPU

• Most important, fast connection between the two

– ˜20GB/s bidirectional bus

– vs. PCI-E 4GB/s peak (not yet seen in practice)



Implications of Console Architectures

• GFLOPs available on both GPU and CPU

– Can get perf. even with branchy code, small amounts of

parallelism

– Can now consider algorithms not suited to GPU alone

• Bandwidth allows round trips

– No longer limited by the unidirectional PC graphics pipeline

– Though N.B. the 40x ratio of FLOPs/float b/w

• What is the future for PCs?



What Can The Two Sides Teach Each Other?

• Offline → interactive

– Quality and variety of visual effects to strive for

– Not so much on the algorithms side?

• Interactive → offline

– What quality is possible from interactive?

– Can it deliver the last 5% in quality? At what cost?

– Are there benefits of giving up that last 5%?

- e.g. artists are more effective



What Is The Future of Offline Rendering?

• Rate of innovation in interactive shows no sign of slowing

• But what is wrong with 12 hour render times, anyway?

– Only a problem if someone is sitting waiting for it; doesn’t

directly affect the consumer

• Specialized tools can be effective if they deliver“good enough”

for the job at hand

– e.g. Pixar’s LPICS lighting tool

• Is the engineering cost of fixing the pipieline less than the cost

of having artists wait?



Future Architectures

• Not much graphics left in graphics hardware

• Will something new change this trend?

– Hardware ray tracing?

• Or are GPUs soon to be a parallel array of fp units with a DVI

connection on the back?

– CPU and GPU manufacturers are both heading this way

from different starting points

• Multi-core/Cell trends will continue on CPU side

– Where best to put FLOPs and with what programming

model still TBD



Future Issues on The Software Side

• How best to use 4,000 FLOPs per pixel?

• Will 40,000 actually lead to better images?

– Big question for both h/w and s/w side

– 30 MFLOPs (as in offline) probably never needed?

• Architectures aren’t easy to program, debug on

– Concurrency, asynchronous data transfer, ...

– How best to use two FLOP heavy processors with very

different sweet spots?



Implications

• Many big problems to address on the s/w side

– s/w is again becoming the main area for innovation in

interactive graphics

– Until the wheel of reincarnation turns again...

• h/w manufacturers (and MSFT) have less control/influence

– Good for developers

– MSFT is likely more or less neutral to this

– Hard for h/w vendors to differentiate on anything other than

computation performance
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