
Interactive Rendering
In The Post-GPU Era

Matt Pharr
Graphics Hardware 2006



Last Five Years

• Rise of programmable GPUs
– 100s/GFLOPS compute
– 10s/GB/s bandwidth

• Architecture characteristics have deeply
influenced s/w and algorithm development

• Revolution in interactive graphics as software
has exploited new hardware



Next Five Years:
A Second Revolution

• Continued GPU innovation
• CPUs finally providing FLOPS as well

– Don’t require nearly as much parallelism
• Shared memory/high bandwidth interconnect

enable flexible computation model
• Future role of today's graphics APIs is unclear



Overview

• The transition to programmable GPUs and
the importance of computation in interactive
rendering

• New heterogeneous architectures
• Implications for graphics software

– Implementation challenges and opportunities
– Increasing importance of software to drive

complex hardware
• Longer-term trends and convergence?



Offline Rendering 5 Years Ago

Shrek (PDI/Dreamworks)



Interactive 5 Years Ago

Quake 3 (id Software)



Modern Offline Rendering

Madagascar (PDI/Dreamworks)



Modern Interactive Rendering

Project Gotham Racing



Modern Offline Rendering

Starship Troopers 2 (Tippett Studio)



Modern Interactive Rendering

I-8 (Insomniac Games)



What’s Happened In
The Last 5 Years?

• GPUs have taken advantage of
semiconductor trends to deliver performance

• GPU strengths/weaknesses have sparked
innovation in algorithms and software
– Interactive graphics is about computation

• Interactive is delivering near-offline quality
1,000,000x faster



GPU Architecture Has Led To
Algorithmic Innovation

• GPU performance cliffs are large
– Must stay on fast path
– Easier to achieve good GPU utilization than good CPU

utilization?

• Benefits from staying on fast path are enormous
• Everyone has a GPU

– Many more developers working in this space
– Millions of GPUs in PCs: incentive to use them efficiently



Three Phases Of
Hardware-Accelerated Graphics

• Configurable fixed-function graphics
– Register combiners, multipass

• Programmable shading
– Vertex and fragment shaders, texture

composition, pattern generation, lighting models
• Programmable graphics

– Shaders implement graphics algorithms using
complex data structures



Example: Displacement
Mapping Redefined

• Classic technique from offline rendering
• Texture map defines offset from base surface
• Offline approach:

– Finely tessellate to pixel-sized triangles
– Move triangle vertices appropriately
– Discard triangles when done with them



Displacement Mapping
Redefined

• Offline approach not suited to current
hardware
– GPU is balanced for ~8 pixel big triangles
– Not enough vertex processing power for many

small triangles
– Small triangles not good for rasterizer/fragment

processor
• Therefore, developers must invent new

techniques better suited to the hardware



Displacement Mapping
Redefined

• Draw bigger triangles, do work in fragment
processor
– Better match to GPU’s strengths and weaknesses

• Representative approach: Donnelly’s
distance map-based ray tracing
– Small 3D table stores representation of empty

space above displaced surface
– Fragment shader marches through space until

surface intersection is found



Distance Map Sphere Tracing



Bump Mapping

Will Donnelly



Displacement Mapping

Will Donnelly



Data Structures Are Central
To Interactive Rendering

The most important value of GPU
programmability is not procedural texture

generation, but the ability to use data
structures in interactive rendering



Data Structures For
Interactive Rendering

• Programmable graphics >> programmable shading
• Examples:

– Distance map for displacement mapping
– Quadtree for adaptive shadow map refinement
– Hierarchical disk tree for dynamic ambient occlusion

• GPGPU mindset is needed to use the GPU this way
– How do I make this data-parallel processor run data-parallel

algorithms to achieve a desired result?
– This expertise is not widely held…



One Little Problem…

• What if the displacement texture is computed by the
GPU?
– e.g. for a deforming displaced surface

• Need to also compute a new data structure for
efficient sphere tracing

• No problem to do that on the powerful GPU… right?



Dynamic Data Structures
Are A Big Problem

• GPU is good at traversing data structures,
very bad at building them

• Data structure construction generally has
little available parallelism
– The GPU requires a lot of parallelism for

performance
• There isn’t enough bandwidth for the CPU to

build them dynamically



Dynamic Data Structures
Are A Big Problem

• Sorting, reductions, etc., to build data
structures on the GPU are possible
– Getting good performance is very difficult
– A lot of bandwidth is burned along the way

• Only experts have the necessary knowledge
– Deep understanding of the hardware is needed

• Amdahl’s law: inefficient data structure
construction will increasingly be the
bottleneck



What’s New In Hardware
Architectures?

The Getaway 3 (SCEE)



Next-Generation
Heterogeneous Architectures

• We are again in a time of architectural change
– CPUs are going parallel, starting to offer FLOPS

• High bandwidth interconnects let CPU and
GPU work together
– Heterogeneous compute resources are available

• New architectures address GPU weaknesses
– Equally revolutionary implications for interactive

graphics



The PC of 2006

• 2 core CPU
– 30 GFLOPS

• GPU
– 200 GFLOPS

• Interconnects
– 1 GB/s CPU to GPU
– 8 GB/s CPU to system memory
– 30 GB/s GPU to graphics memory



What’s Wrong With
Today’s PC?

• CPU still doesn’t have spare FLOPS for
interactive graphics

• 1 GB/s on PCI-E prohibits CPU-GPU round
trips

• The only processor with FLOPS, the GPU,
requires much parallelism for performance

• GPU has limited memory writes
– Improved somewhat by DX10



Game Console Architecture:
XBox 360

• 3-core PPC CPU @ 3.2GHz
– 115 GFLOPS

• Xenos GPU
– 240 GFLOPS
– EDRAM framebuffer

• Interconnects
– 10GB/s CPU to shared memory
– 20GB/s GPU to shared memory



Game Console Architecture:
PS3

• STI Cell @ 3.2GHz (one PPU, seven SPUs)
– ~200 GFLOPS

• RSX GPU
– ~200 GFLOPS

• Interconnects
– 25GB/s Cell to main memory
– 20GB/s Cell to GPU, 15GB/s GPU to Cell
– 22GB/s GPU to graphics memory



Heterogeneous Architecture
Implications

• At 720p resolution, 60 frames per second…
– 200 GFLOPS gives ~3000 FLOPS/pixel
– 20GB/s allows 75 floats of communication/pixel

• 150 halfs

– (Peak performance)
• Developer can choose: provide little

parallelism and manage memory latency, or
prodive a lot and ignore it



Good News About
The New World Order

• GFLOPS are available on both the CPU and
the GPU
– Can have performance even with much less

parallelism
– Can consider algorithms not suited to GPU alone

• Bandwidth enables algorithm decomposition
between CPU and GPU
– While still maintaining interactivity
– Goodbye to the one-way graphics pipeline



Good News About
Dynamic Data Structures

• These architectures have the potential to
build complex data structures at runtime:
– GPU computes data
– CPU builds data structure based on result
– GPU uses data structure

• This can play to the strengths of both
processors



Using The GPU More Efficiently
With Help From the CPU

• The one-way PC graphics pipeline is a blunt hammer
– CPU can use occlusion query, etc, to try to drive GPU more

efficiently, but little information is available to it
– And the GPU is unable to issue commands to itself
– (DX10 geometry shaders do help here)

• Heterogeneous architectures can do much better
– GPU does some work
– CPU examines intermediate results
– CPU gives GPU more work



Example: Efficient Data
Structure Traversal

• The GPU can traverse tree data structures
– E.g. ambient occlusion disk trees, kd-trees, lightcuts,

shadow quad-trees, …

• If a large collection of nearby fragments all traverse
the same top level nodes, computation is wasted

• CPU can start traversal until divergence, then let
GPU continue from there
– Analogies to Reshetov et al Multi-Level Ray Tracing



Many Other Opportunities

• More efficient deferred shading
• Skip rendering cube map faces and shadow

maps that are not needed
• Adaptive refinement
• Can do a smaller superset of the necessary

computation for rendering an image than if
GPU alone was doing the rendering



A Few Little Details…

• Parallel programming is a notorious quagmire
– Heterogeneous processors don’t make it easier
– Data synchronization and movement are tricky

• GPUs are the only type of parallel processor that has
ever seen widespread success
– …because developers generally don’t know they are

parallel!
– And if you want to do programmable graphics rather than

programmable shading, cracks start to show



What Is The Right
Programming Model?

• GPU data-parallel languages (Cg, HLSL) do
not map well to CPU model

• C/C++ don’t map well to GPU model
• Need new approaches and abstractions

– Unified language that spans all processors?
– Native code + glue?
– Functional programming (this time at last)?



Future Graphics APIs

• Whither OpenGL 3.0 and DX11?
– Are these APIs for controlling the GPU, or APIs

for interactive graphics?
• i.e. how do they handle heterogeneous architectures?

– Developers and GPU vendors generally have
opposite views on this question

• Currently closely tied to the one-way PC
graphics pipeline



Future Graphics APIs

• What is the role of a graphics API if graphics
is about computation and data structures?
– If API does not embrace all processors and make

it easier to use them for graphics, it will become
irrelevant

• Has the time come to kill the graphics API
and expose the hardware instead?



Exposing A GPU
Hardware Abstraction

• Graphics drivers often are an impediment to
using the GPU well
– Details they abstract are increasingly important

for developers to understand
– Hide actual perf. characteristics of the h/w
– Programmable graphics needs a more direct

understanding of memory for performance



Exposing A GPU
Hardware Abstraction

• Closer-to-the-metal APIs like ATI’s CTM?
– Focus on exposing the GPU’s computational

capabilities
– Expose GPU memory model directly

• More burden on h/w vendors to have clean
orthogonal designs, though

• Developers are unlikely to be happy with
vendor-specific APIs



Future Hardware

• What is the future of GPUs?
– Continually increasing parallelism requirements

are a problem for programmable graphics
– (Less so for programmable shading)

• What is the future workload?
– Graphics continues to offer a lot of parallelism
– But more and more irregular computation
– If CPU offloads irregular parts of the computation,

what is left for the GPU is more homogeneous



Future Hardware

• More reasons to build a single chip CPU and
GPU than cost savings
– Off-chip bandwidth will become more and more

limited w.r.t. available computation
• Will hardware designers have a broad

perspective that allows all processors to work
well together for graphics?
– Presumably a certain two of them will at least!



What Is The Right
Future Architecture?

• Homogeneous vs heterogeneous?
– 64 P4s or 8 P4s and 128 fragment processors?
– More than a few CPUs are overkill for graphics and other

parallelizable compute-intensive workloads
– But the four processors on PS3 (PPU, SPU, vertex,

fragment) are probably too many

• Sweet spot is probably a handful of CPUs and a lot
of fragment processors/SPUs
– (With a rasterizer and texture units)



SPUs vs.
 Fragment Processors

• Two very different models for FP performance
• SPU

– Arbitrary writes (to local store and main memory)
– User-managed latency hiding
– Only need one thread per SPU

• Fragment Processor
– Limited writes
– Memory latency hidden through parallelism
– Requires many threads



Memory Models I

• GPU: limited writes, efficient streaming
reads, no user data synchronization

• Shared memory multi-core CPU: all up to the
application or support library



Memory Models II: SPU

• Explicit DMA to/from main memory to local memory
• This is good discipline

– Encourages operating on large chunks of data
– Encourages data reuse

• Explicit transfers make communication clear
– Useful information for low-level support libraries

• This style is necessary for perf. on CPUs anyway



Challenges In Building
Interactive Renderers

• All increasing with new architectures
• Choosing the right algorithms
• Implementation complexity

– Math is hard
– Architectures are complex
– Need to develop algorithms that span CPU and GPU

• Software must solve these problems for new
hardware to have value



Summary

• New heterogeneous architectures have great
promise for interactive graphics
– Dynamic data structures
– Efficient GPU utilization
– An enabler for programmable graphics

• Challenges are significant
– Programming model
– Algorithm implementation
– Designing the right hardware architectures



Thanks
• Neoptica: Craig Kolb, Aaron Lefohn, Paul Lalonde,

Tim Foley, Geoff Berry
• Stanford: Mike Houston, Jeremy Sugarman, Daniel

Horn, Kayvon Fatahalian, Pat Hanrahan
• John Owens
• Bill Mark
• Kiril Vidimce
• Doug Epps
• Eric Leven



Questions?


