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Fig. 1. With geometric details at the scale of a few pixels, unscrambled Sobol sampling points may give structured artifacts. This is a typical example of
aliasing artifacts [Shannon 1948] where frequencies beyond the sampling rate manifest as low-frequency structures. Owen-scrambling the points causes the
error to be higher-frequency, which is more visually pleasing. Our approach, ART-Owen Scrambling, efficiently generates Owen-scrambled sample points using
a grammar based on adaptive regular tiles (ART).

We present a novel algorithm for implementing Owen-scrambling, com-
bining the generation and distribution of the scrambling bits in a single
self-contained compact process. We employ a context-free grammar to build
a binary tree of symbols, and equip each symbol with a scrambling code that
affects all descendant nodes. We nominate the grammar of adaptive regular
tiles (ART) derived from the repetition-avoiding Thue-Morse word, and we
discuss its potential advantages and shortcomings. Our algorithm has many
advantages, including random access to samples, fixed time complexity, GPU
friendliness, and scalability to any memory budget. Further, it provides two
unique features over known methods: it admits optimization, and it is in-
vertible, enabling screen-space scrambling of the high-dimensional Sobol
sampler.
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1 INTRODUCTION
Sampling is an essential process that underlies many areas in com-
puter graphics (CG) including rendering, halftoning and stippling,
geometry processing, and machine learning. The quality of the sam-
pling patterns used can have a significant effect on the error and
rates of convergence in the tasks they are applied to. Sampling in
CG is characterized by enormous sampling rates, typically billions
of samples to render a single image from a model. Thus, not only is
the quality of the points important, but the efficiency of generating
them is important as well, as it affects the runtime of rendering-
intensive applications such as movie production, computer games,
and architectural modeling. The problem is further complicated in
rendering by a requirement to vary the samples between the sam-
pled domains (time, camera lens, area lights, etc.) that constitute
the light transport paths, as well as between neighboring pixels,
in order to avoid moiré patterns, banding, and similar structured
aliasing artifacts. Similar constraints usually apply to other areas,
e.g., halftoning or geometry processing. This poses an extraordinary
demand on the sample-generating process that it is required not
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only to deliver a well-distributed set of samples but also a different
one in each call. That is, a randomization method needs to be in-
corporated into the sample generation process while ensuring not
to compromise the distribution quality or significantly degrade the
speed performance.
Different techniques were proposed to answer to these chal-

lenging requirements in this open research area. Popular early ap-
proaches [Glassner 1995] include stratification, where individual
samples are randomly placed over a grid of cells, and Poisson-disc
sampling, where a minimal prescribed spacing is enforced between
otherwise random samples. These techniques, and others, were
mostly developed heuristically by the CG community, and they
worked satisfactorily well, then. Most of these solutions, however,
fall short of scaling well to meet the demand of modern Monte-
Carlo-based advanced rendering engines. For example, stratification
is cursed by the dimensionality of complex light paths, and look-up-
based methods impose memory bottlenecks on GPUs. These, and
similar issues, lead to increasing adoption of the low-discrepancy
(LD) sampling methods developed by the Monte Carlo community,
and first introduced to computer graphics by Shirley [1991]. A math-
ematical recipe is used to compute the samples in these distributions,
making them efficient in terms of both memory and speed. In addi-
tion, they scale well with dimensions and attain provably excellent
performance in numerical integration, making them an attractive
candidate for use in rendering and similar applications.
Of special interest are Sobol sequences [1967]. Thanks to their

bit-arithmetic nature, they offer high computational performance,
sometimes outperforming high-quality pseudo-random number gen-
erators, while also exhibiting excellent numerical integration perfor-
mance. The interested reader is referred to Keller [2013] for a survey
of how these sequences may be tailored to rendering problems.
Randomized Sobol sequences offer further benefits, including

reduction of the structured error that can be seen at low sampling
rates with Sobol points, as well as making it possible to apply ran-
domized quasi-Monte Carlo (RQMC) techniques. Intuitive random-
ization methods, such as Cranely-Patterson toroidal shifting [1976],
compromise the structure of these distributions, degrading their
performance. The best-known approach for randomizing Sobol se-
quences is known as Owen Scrambling, after its inventor [1995].
Beyond the benefits of randomization, Owen scrambling offers fur-
ther benefits, including asymptotically higher rates of convergence
than regular Monte Carlo for smooth functions. We will describe
the key ideas of Owen scrambling in Section 3.2. Implementing the
concept, however, is not simple. The problem, in abstract terms,
involves distributing random bits over a tree. It may sound easy,
and in fact is, but not so without losing the enormous throughput
offered by the vanilla Sobol sampler.
Implementing Owen scrambling is a well-known challenging

problem, as noted by Owen himself [1998]. Only a few solutions
were proposed over the past years, offering different trade-offs be-
tween quality, speed, and versatility. Combined with a lack of user
control over the generated samples, Christensen et al. [2018], fol-
lowed by Pharr [2019], made an attempt to skip Owen-scrambling
altogether by synthesizing a Sobol-like sequence. Ahmed andWonka
[2021], however, subsequently revealed that Owen scrambling spans
all the space of Sobol-like sequences, bringing Owen scrambling

back as the one-and-only way to go with Sobol sequences. Thus, a
satisfactory implementation of Owen scrambling is highly desirable.
Numerical error is not the only metric that matters when eval-

uating sampling techniques. For example, sampling patterns with
blue noise power spectra generally appear to have lower perceived
error than those that do not, thanks to characteristics of the human
visual system [Mitchell 1987; Ulichney 1987]. It is also useful to be
able to invert the mapping, which allows applying a single global
sampling pattern across the image plane and then being able to
enumerate the samples that overlap a single pixel [Grünschloß et al.
2012]. Doing so is crucial for both adaptive sampling and parallel
implementation.

In this paper, we present a novel approach to implementing Owen
scrambling efficiently that combines the random bit generation with
tree traversal in one process. Unlike all known methods, our ap-
proach provides a generous amount of user control over the scram-
bling process, and our model is quite flexible, offering different
trade-offs between quality, speed, memory, and control, all in one
framework. Thus, rather than offering a single working implementa-
tion, we provide a flexible framework that can be reconfigured and
extended with different algorithmic choices. We start by reviewing
the most related work in Section 2, followed by a brief review of the
technical elements required to understand the paper in Section 3.
We describe our core model in Section 4, along with a discussion
of the possible variations in Section 5. We then evaluate the model
by highlighting various practical aspects in Section 6, and make
concluding remarks in Section 7.

2 RELATED WORK
Owen scrambling was originally presented in the context of Monte
Carlo integration as a way to impose randomness onto semi-regular
quasi-Monte samples, so as to enable variance estimation as with
the vanilla Monte Carlo method [Owen 1995]. It therefore relates to
a bulk of literature in Monte Carlo and numerical integration areas
of research. Most of that literature, however, is devoted to provable
discrepancy and error bounds, whereas the focus in CG is more on
the perceivable visual quality and spectral profiles. We, therefore,
confine this section only to the literature related to CG, or cited
there.
Many alternatives were proposed to emulate Owen scrambling.

For example, XOR-scrambling [Kollig and Keller 2002] uses a single
scrambling bit per level of the tree. Tezuka [1994] proposed a slightly
richer matrix-based scrambling. His work actually preceded Owen’s,
but may still be seen as a special case of it. These alternatives,
however, are far less powerful than the full-tree Owen scrambling,
and can only realize a smaller subset of possible Owen scramblings,
trading quality for speed.
An early efficient implementation of Owen scrambling was pre-

sented by Friedel and Keller [2002]. Randomization bits are gener-
ated and consumed on the go by sorting the sample points, leading
to optimal space complexity and O(𝑁 log(𝑁 )) performance, mainly
bottlenecked by the sorting pre-process. Helmer et al. [2021] re-
cently presented an orders-of-magnitude faster implementation by
“hacking” the sample-generation algebraic recipe and extracting
a very simple indexing rule to replace the sorting process. Their
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implementation is actually tangibly faster than the typical common
implementation [Pharr et al. 2023] of the vanilla Sobol sequence.
Both techniques realize a true, uncompromised Owen scrambling—
as far as the used random number generator is random. On the
downside, these techniques compute all the samples at once, vio-
lating the parallelization requirements in rendering, for example,
where the leaves down the scrambling tree need to access consistent
scrambling information in ancestor nodes. We consider Helmer’s im-
plementation the current state of the art in delivering high-quality
Owen-scrambled sets, and we use it for benchmarking in Fig. 9.
Owen [2003] himself proposed a hash-based implementation,

currently adopted in PBRT [Pharr et al. 2023], that computes a
hash function after each digit is generated to determine whether
to flip the subsequent bit. More recently, Burley [2020] presented a
different hash-based algorithm. It exploits an observation that the
long-multiplication process, as taught in primary school, produces
a nested tree, but in the opposite direction of bit significance. The
trick, then, is to reverse the bits, multiply by a scrambling code, and
reverse the bits again. Through this simple process, Burley managed
to obtain a very efficient implementation of Owen scrambling. The
main shortcoming of the method is the limited control. The method
employs a selection of mixed-bits integers, but it is not quite clear,
so far, how these exactly map to the actual scrambling bits. Based
on our empirical testing, we noted some spectral distortion in the
resulting sets, as may be seen in Fig 9(e).
Gruenschloß et al. identified the importance of being able to in-

vert low-discrepancy constructions in order to enumerate the low
discrepancy sample points that overlap a selected pixel [2012]. They
presented algorithms that do so for both Halton and Sobol points,
though do not support Owen scrambling of these points. Thus, for
example, typical practice in current rendering frameworks is not to
apply scrambling for the first two dimensions of low-discrepancy
points used for image plane sampling, even if the remaining dimen-
sions are scrambled [Pharr et al. 2023].

The mentioned implementation methods offer different trade-offs
between speed, memory footprint, quality, and coding complexity.
In this paper, we propose a single parametrized model that avails
flexibility to adapt to different budgets and targets just by tuning the
parameters. In addition, our model uniquely offers a fast inversion
of the scrambling where needed.

3 ESSENTIAL BACKGROUND
Before presenting our method, in this section, we make a brief
review of a few underlying concepts. Readers familiar with the titles
may skip the respective subsections.

3.1 Nets and Sequences
Owen scrambling is closely associated with low-discrepancy nets
and sequences [Niederreiter 1992]. A full understanding of nets
and sequences is not really needed to understand the paper, but
it is worthwhile reviewing them to put our method into context.
These are best described in terms of stratification mentioned in the
introduction. To choose 16 2D sample points, for example, we may
intuitively divide the sampled domain into 4× 4 cells, also known as
strata, and pick a sample point inside each stratum. Nets, however,

are designed to simultaneously satisfy all possible stratifications:
16 × 1, 8 × 2, 4 × 4, 2 × 8, and 1 × 16, which implies much-improved
uniformity and copes with a wider range of sampled signals that
vary differently along the two axes. Such a layout is called a (0, 4, 2)-
net in base 2, which means having 20 = 1 sample point in each of
the possible 2−4-large strata in 2 dimensions. The model is known
as (𝑡,𝑚, 𝑠)-nets in base 𝑏, and extends analogously in each of these
parameters. The idea is extended further into (𝑡, 𝑠)-sequences in
base 𝑏 that, for any𝑚, maintain a (𝑡,𝑚, 𝑠)-net for the first and all
subsequent 𝑏𝑚 blocks in sequence.
Such a complex non-obvious sample distribution model primar-

ily emerged thanks to the existence of comprehensible algebraic
recipes to construct it. The interested reader is referred to Dick
and Pillichshammer’s book [2010]. The model developed in this
paper primarily targets Sobol sequences, which synthesize high-
dimensional sequences of samples from carefully designed one-
dimensional (0, 1)-sequences in base 2 along constituent dimen-
sions. The first two dimensions of Sobol sequences constitute a
(0, 2)-sequence; see Pharr et al. [2023] for an introduction to the
topic.

3.2 Owen Scrambling
Owen scrambling is an algorithm that derives new nets and se-
quences from given ones. It is best explained in terms of a tree,
where it can be described concisely as:

Shuffle the branches while keeping them together.
Considering the binary case of Sobol, for example, Owen scrambling
is applied as post-processing to the coordinates of the computed
sample points in the unit domain, treating each axis as a binary
tree, as illustrated in Fig. 2, and recursively shuffling the halves.
Fig. 3 shows a more visual illustration of the abstract process in
Fig. 2. Even though the scrambling is applied independently to each
axis, the “keep together” instruction ensures that two- or higher-
dimensional strata stay contiguous, hence preserving the net or
sequence properties.
Owen scrambling gives rise to a binary scrambling tree, with a

single bit of information in each node instructing whether to (0)
leave or (1) swap the halves. The whole tree carries 2𝑚 − 1 bits of
information for an𝑚-bit resolution of coordinates, giving rise to
22

𝑚−1 different shufflings along each axis. This completely solves the
variation problem discussed in the introduction. The challenge, then,
is in how to efficiently supply the enormous amount of scrambling
bits while ensuring an acceptable level of randomness.

3.3 Adaptive Regular Tiles
Our model is inspired by Adaptive Regular Tiles (ART) [Ahmed et al.
2017], hence the title of the paper. A full understanding of that work
is not needed to understand our paper, so we only give a high-level
abstraction of the relevant part.
The goal of ART is to be able to discriminate tiles and neigh-

borhoods in a recursive regular-lattice tiling. Earlier treatments of
similar problems included identifying by the geometry of the neigh-
borhoods in complex-shaped tiles [Ostromoukhov 2007; Wachtel
et al. 2014], and color-coding the edges of regular tiles, along with a
matching rule [Kopf et al. 2006], but Ahmed et al. approached the

ACM Trans. Graph., Vol. 42, No. 6, Article 258. Publication date: December 2023.



258:4 • Abdalla G. M. Ahmed, Matt Pharr, and Peter Wonka

.

.0

.00

.000

.0000 .0001

.001

.0010 .0011

.01

.010

.0100 .0101

.011

.0110 .0111

.1

.10

.100

.1000 .1001

.101

.1010 .1011

.11

.110

.1100 .1101

.111

.1110 .1111

(a) Input: binary tree of the unit interval

1

0

1

1

1 1

0

1 1

1

0

1 1

1

1 1

1

0

0

1 1

0

1 1

1

1

1 1

0

1 1(b) Binary Scrambling tree

.

.1

.11

.111

.1110 .1111

.110

.1101 .1100

.10

.100

.1000 .1001

.101

.1010 .1011

.0

.00

.001

.0010 .0011

.000

.0001 .0000

.01

.011

.0111 .0110

.010

.0100 .0101

(c) Scrambled unit interval

Fig. 2. Illustration of Owen scrambling of the unit interval [0, 1) . Each node
in the scrambling tree instructs to swap the branches of the corresponding
node of the tree to be scrambled, where indexing uses the original positions
of the nodes, before scrambling. Note that all intervals stay contiguous,
even though possibly scrambled.

problem differently by treating the dimensions separately. That is, a
one-dimensional matching rule is extended as a Cartesian product
to higher dimensions, which makes the concept work with the simi-
larly structured Owen scrambling. For the one-dimensional problem,
they maintain a set of identification symbols, e.g., {𝐴, 𝐵,𝐶, 𝐷}, and
define a context-free grammar, e.g.,

𝜓 :

𝐴 ↦→ 𝐴𝐷

𝐵 ↦→ 𝐵𝐶

𝐶 ↦→ 𝐴𝐵

𝐷 ↦→ 𝐵𝐴

, (1)

to map each symbol to a pair of symbols from the same set. The goal
is to define a set of production rules for laying child tiles on top of
larger ones. Starting from a single tile with any id, we note that the
recursive application of Eq. (1) produces a binary tree of symbols,
which is then matched to a binary tree of tiles defining a recursive
tiling. This assigns an id to each tile at every level. The original
goal of Ahmed et al. was to control the neighborhood around each
distinct tile, and towards that end, they developed the grammar from
the repetition-avoiding low-complexity Thue-Morse word [Lothaire
2002], as we will review in Section 5.1.

4 OUR METHOD
While the ART model described in Section 3.3 above was originally
meant to distribute sample points over tiles, we note that the con-
cept is generic, and can be used to distribute any information over
the nodes of a tree, as abstracted in Algorithm 1. For practical im-
plementation, the alphabet is typically defined implicitly as the set
{0..𝑁 − 1} of the first 𝑁 integers, and the grammar is encoded as
an 𝑁 × 𝑞 array populated with integers in the designated range.

Algorithm 1: ART methodology for distributing informa-
tion over the nodes of a tree.
Input : (1) A target tree data structure of a fixed branching

rate 𝑞 and an arbitrary depth.
(2) A prescribed data storage budget 𝑁 .

Output :An assignment of samples of data to nodes of the
tree.

1 Define an alphabet Σ = {𝑆𝑖 }𝑁𝑖=1 of 𝑁 symbols;
2 Define a grammar, i.e., a production rule, that maps each

symbol to a 𝑞-tuple of symbols from the same set;
3 Store a data element in each symbol;
4 Starting from an arbitrary symbol, apply the production rule

recursively to produce a tree of symbols that matches the
target tree;

5 For each node in the target tree assign the data element
stored in the symbol of the corresponding node in the
matched tree.

ART methodology is simple, intuitive, and efficient, and naturally
matches the problem of distributing information over a tree. It is not
obvious, though. Indeed, the only application of it we are aware of,
beyond the original paper, is the one by Ahmed and Wonka [2020],
who used it to scramble a quad-tree of pixels, a problem akin to
Owen scrambling. Our idea is very similar, and is inspired by theirs,
but introduces an important modification to solve a shortcoming in
the original model; discussed next.
The power of ART methodology comes from the reasonable as-

sumption that reusing the same information over different levels
in the hierarchy is not a problem. There is still a problem, though,
that the same symbol might repeat at the same level. The context-
free nature of the grammar, then, implies that all the descendant
subtrees would behave identically, since they have the same hierar-
chy of children, each carrying the same information. This was not
deemed a problem in [Ahmed and Wonka 2020] possibly thanks to
their relatively generous alphabet size of 4K symbols. The problem,
however, becomes quite serious with the very small alphabets we
would consider for an efficient implementation of Owen scrambling.
Indeed, repetition is inevitable once the breadth of the tree tops the
number of symbols. In addition, carrying a single information bit
per entry is relatively inefficient, and does not help a lot in building
a GPU-friendly solution. Thus, despite its elegance, the plain ART
methodology in Algorithm 1 falls short of meeting the excessive
information bandwidth required to implement Owen scrambling.

4.1 ART++

To overcome the limitation of the original ART model, we introduce
a small modification that makes a big difference. We superimpose a
level of context awareness onto the information distribution tree.
Instead of placing a single bit of information in each symbol to
encode the swapping of its immediate pair of children, we equip
each symbol with a whole vector of bits that affects all descendants,
one bit for each level. Readers familiar with net scrambling may
be able to identify this with XOR scrambling [Kollig and Keller
2002]: each symbol stores a scrambling code that applies to the
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Input 1 1 0 1 0 1 1 0 1 0 0 0 1 1 0 Scrambling both axes

Fig. 3. Illustration of Owen scrambling applied to an image spanning the unit square, using the same “1,01,1101,10010010” scrambling tree in Fig 2 for the
𝑥-axis, applied step-wise to each depth. Please note that the convention is to index the scrambling bits after the unscrambled nodes of the domain as if the
scrambling is applied bottom-up to the tree, which might be confusing at the beginning. The scrambling of the 𝑦-axis uses a “0,10,1010,01110010” tree. Note
that all intervals stay contiguous, even though possibly scrambled.

Algorithm 2: C-code implementation of ART-Owen scram-
bling.
inline	unsigned	scrmbl(unsigned	xIn,	Prod	&prod,	unsigned	*data,	int	id)	{
				unsigned	xOut	=	xIn;
				for	(int	i	=	0;	i	<	BITS;	i++)	{
								xOut	^=		data[id]	>>	i;
								id	=	prod[id][(xIn	>>	((BITS	-	1)	-	i))	&	1];
				}
				return	xOut;
}

corresponding interval the same way XOR-scrambling is used over
the whole domain.

The essence of our modification is that, even though two nodes at
the same level may carry the same symbol, and the same scrambling
vector as well, they may still behave differently thanks to the infor-
mation inherited from their different ancestry. Assuming a random
assignment of scrambling vectors, this model only fails significantly
if the grammar assigns an “identical twin” pair of children to a
symbol, which may easily be avoided in the grammar construction
step 2 of Algorithm 1. The interaction of the random scrambling
vectors embodies the randomization element, and with a careful
choice of the grammar it can generate a rich set of quasi-random
scrambling bits, as demonstrated empirically in Fig. 9.
This idea, along with the abstract ART methodology in Algo-

rithm 1, constitute the core of our approach to solve the Owen
scrambling problem. Algorithm 2 lists the actual run-time code.
While the reader may find the concept quite simple, as we do, it
is by no means trivial. In the rest of this paper, we discuss various
aspects of the method and highlight some of the available handles
to unlock its full potential.

5 GRAMMAR
We start our discussion with a few choices for the grammar, which
is an intrinsic part of the model. As we mentioned, the structure
of our model is deceptively simple. The two levels of referencing:
traversing the information tree, and evaluating the scrambling bits,
are especially confusing, and might mislead one into making the
wrong conclusions about the size of the design space. Even though
the model uses only𝑚 · 𝑁 bits for applying an𝑚-bit deep scram-
bling, the size of the design space is actually much larger, thanks
to the factorial growth of the grammar choices. Specifically, we
have 𝑁 2𝑁 possible grammars, which is comparable to the huge

size of Owen scrambling trees. To give an example, a 256-symbol
grammar size generates 256512 = 24096 = 22

12
, which tops a 12-bits

Owen-scrambling tree. On top of that, then, comes the actual scram-
bling data fed to symbols. The resultant size, however, is not a
Cartesian product, since not all the grammars have the same ca-
pacity to distribute information. To give an example, we take the
extreme case of a grammar, or actually ‘the’ grammar, that maps
each symbol to itself on both branches. This grammar is equivalent
to a single-symbol grammar, irrespective of the size.
The redundant size of the design space is not necessarily very

good news, though. Indeed, noting that the size of the grammar
space may exceed the size of the target scrambling trees for a smaller
memory size simply means that there are duplicates, which is not
a big issue in itself, but raises concerns about the presence of gaps
as well; that is, the existence of some scrambling trees that are
never realizable by the method, or by a specific realization of it. This
motivates the importance of studying the grammars in our model.
In the following we discuss three possible choices of grammars,
illustrated in Fig. 4.

5.1 Thue-Morse Grammar
Since our model is inspired by Ahmed et al. [2017], their chosen
grammar comes as a natural choice for us to consider first. The
grammar is obtained by extending the binary Thue-Morse (TM)
grammar

` : 0 ↦→ 01
1 ↦→ 10 (2)

to a larger set of symbols. Starting from 0, repeated application of
Eq. (2) leads to the Thue-Morse word

𝑇 = 01101001100101101001011001101001 . . . (3)

as a steady point. This is one of the most studied words in the Com-
binatorics of Words field of study [Lothaire 2002]. It is characterized
by its repetition-avoidance properties, and that is what made it
attractive for use in sample distribution, and also promises good
performance in our model. As discussed in detail in [Ahmed et al.
2017], an extended grammar may be derived from𝑇 as follows. The
symbols are identified by the distinct sub-strings of a chosen length
in𝑇 , the number of which decides the alphabet size. The production
rules are deducted by applying Eq. (2) to the identification strings,
and reading the child identification strings. Since 𝑇 is a fixed point,
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(a) TM: ((0, 3), (1, 2), (0, 1), (1, 0)) (b) Ordered: ((1, 2), (3, 2), (1, 1), (1, 3)) (c) Random: ((3, 2), (2, 2), (0, 0), (0, 0)) (d) Random: ((3, 0), (3, 2), (1, 2), (0, 2)) (e) Random: ((3, 3), (3, 1), (3, 0), (0, 0))

Fig. 4. Example ART-Owen scramblings of the first 256 points of 2D Sobol sequence, showing (top-left) a sample point distribution, (bottom-left) the frequency
power spectrum obtained by averaging periodograms over 1K realizations, and (right) the mapping of the information bits to the actual scrambling bits;
comparing: (a) Thue-Morse grammar, (b) ordered grammar, and (c, d, e) three random grammars. Only four symbols are used, and the actual grammar is
shown below each set. Each setting of the randomization data represents a realization. The mapping plot is essentially just a linear system of GF2 equations
relating the final scrambling bits to the tabulated data bits. Each column of the grid corresponds to an assigned data bit of a symbol in the grammar, grouped
by significance then depth. Each row corresponds to an output bit in the scrambling tree. The horizontal section lines mark the boundaries of tree levels.
Finally, a dot in an intersection means that the scrambling bit in the row is affected by the data bit in the column.

all produced strings exist in 𝑇 , hence this process maps to children
from the same set. We will avoid the distracting details here, and
confine ourselves to an abstract idea that this non-obvious process
enforces the resulting grammar to maintain a more-or-less similar
sequence of symbols at all levels of the tree. The essence of this is
that, if the tree works well at a given level, it works equally well at
all levels.

We tested the TM grammar in our model, and it produced excel-
lent results, as far as we can judge from the frequency spectrum.
For more reassurance, we developed a visualization to see how the
scrambling data is distributed over the scrambling tree, as may be
seen in the vertical grids in Fig. 4. While it is not easy to extract
conclusions from this visualization, we may still note that the TM
grammar produces a good coverage of the space, which suggest a
reasonable shuffling of the data bits to produce the final scrambling
bits. To highlight a contrast, for example, note that the first column
in Fig. 4(b) is almost empty, indicating that this bit is only used
once. Cross-checking with the grammar readily reveals that 0 is
not produced by any rule, hence only found in the root node. This
under-utilization gives a good example of the problems that may
arise in an arbitrary grammar.
From the preceding discussion we may see that a tested-and-

working grammar is invaluable; pending the development of a more
objective solutions to choose from the intractable design space. We
therefore nominate the TM grammar as our default. This also helps
in maintaining a reference for bench-marking. We have experi-
mented with this grammar for different alphabet sizes, including
2, which reduces to Eq. (2), and we have not seen any failure case.
The plots in Fig. 9 use this grammar. All that being said, the TM
grammar is still not optimal in all aspects, as we will reveal next.
Please note that scrambling data is generated randomly, irrespective
of the grammar.

5.2 Ordered Grammar
The bit-mapping visualizations in Fig. 4 actually represent a linear
system that may be solved for the data bits, reversing the model.
This makes it possible to select data bits so as to reproduce a specific
scrambling tree. Trying to test this idea with our nominated TM
grammar, we were disappointed to realize that the system fails
early, consistently producing an-all zeros equation in the eights row,
no matter how large the alphabet is. We tried many tricks in the
grammar extraction to avoid this destination, but they all failed.
This possibly comes from the fact that the grammar is inherited
from a binary one. This by no means implies that the TM grammar
is not a good one. It still distributes the scrambling data fairly over
the whole tree, at all levels. Just that it does not prioritize the leading
bits enough as needed to solve our current problem.
To solve this shortcoming with the TM grammar, we conceived

a brute-force grammar model that is guaranteed not to fail in this
specific problem of reproducing a given scrambling tree, obtained
by placing the symbols orderly such that they fill the top of the tree,
hence we call it ordered grammar. See Fig. 5. The production rules
are then read back from the tree, and the missing rules are filled
arbitrarily. Given a sufficiently-large alphabet, an ordered gram-
mar, by construction, can reproduce any given Owen scrambling
of any depth. Not necessarily efficiently, though, and we are not
claiming optimality. Actually, the first sample ordered grammar
we drew randomly for illustration in Fig. 4(b) readily exhibited an
under-utilization, as discussed in the preceding section, that the root
symbol is not reproduced by any rule. This happened by chance, and
we embraced it to highlight this potential inefficiency. Please note
that this is not necessarily an inherent deficiency with this grammar
model; it warrants more research to find out, which we leave for
future followup. Our main goal for now is to prove this important
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Fig. 5. An illustration of a tree generated by a 16-symbol ordered grammar.
The essence is to allocate a distinct symbol, hence ensure an independent
bit setting, for the topmost nodes of the scrambling tree; that is, the most
significant bits of the scrambled data. The grammar is read back from the
tree: (𝑎,𝑏, . . . , 𝑔, ℎ, . . . , 𝑝) ↦→ (𝑏𝑐,𝑑𝑒, . . . , 𝑛𝑜, 𝑝?, . . . , ??) , and the missing
entries (question marks) are populated arbitrarily.

aspect of our model that it spans all the universe of Owen scram-
bling, answering to the gaps question we raised at the beginning of
the section.

5.3 Random Grammar
Finally, we discuss the intuitive choice to use a random grammar. A
random production rule essentially spans the universe of grammars,
which may sound good for our goal of random shuffling. There is a
subtle point that we need to be cautious about here, however, buried
in the two levels of referencing. Indeed, composing two randomized
operations would not necessarily produce more or equally random
results: they can counter each other. Notably, we may already see
noticeable regularity in Fig. 4(c, e) produced by supposedly random
grammars. Thus, there are certain rules and cases that we would like
to avoid in our model. A clear one is the twin rule discussed earlier.
Another one is fragmenting the alphabet into smaller disjoint sets.
This case becomes quite serious, and also quite likely, in a small
alphabet. We therefore do not recommend using a random gram-
mar for a small alphabet. At least it should be manually inspected.
We note that our favored TM grammar provably avoids these two
problems. In summary, a random grammar is not a first choice in
memory-conservative applications; e.g., GPU-based ones.
Despite all the mentioned warnings, a random grammar still

remains an attractive choice for scenarios that can afford a relatively
large alphabet size. For example, CPU-based applications. Of special
interest is the 256 alphabet size. The symbols fit exactly in one byte,
making the assignment as simple as a single memory read.

6 EVALUATION
In the following, we discuss various aspects of our method. See
Table 1 for a summary of the performance and differences among
the various techniques for generating Sobol points that we have
evaluated. Our model trades a marginal loss of speed for other ben-
efits; the key ones are scalability, invertibility, and the opportunity
for optimization.

6.1 Rendering
The primary application of Sobol sequences and Owen scrambling
is rendering. We integrated our scrambling code as a new sampler
in PBRT [Pharr et al. 2023]. Fig. 1 demonstrates the benefit of Owen
scrambling for anti-aliasing in the image plane, while Fig. 6 demon-
strates similar perceptual improvements in sampling area lights and

Table 1. Summary of the characteristics and performance of various meth-
ods for generating Sobol sample points. Performance is measured by render-
ing the scene in Fig. 1 on an NVIDIA 4090 RTX GPU. Although high-quality
scrambling algorithms increase the sample generation time by a factor of
1.6, sample generation is still just 2.2% of total rendering time.

Sobol Scrambling Time Invertible? Quality Optimizable?
None 1× Yes n/a No
XOR 1.03× Yes Poor No
Burley [2020] 1.05× No Good No
Hashed [Owen 2003] 1.62× No Excellent No
ART Owen 1.64× Yes Excellent Yes

camera lens. Please refer to the full-resolution images of these and
other scenes in the supplementary materials.
Even though our model is very efficient, it can by no means be

faster than the unscrambled sampler; see the sampling “Time” mea-
surements in Table 1. Our measurements show that our scrambling
causes Sobol sample generation to be 1.64× times slower than un-
scrambled Sobol sample generation, measured on an NVIDIA RTX
4090 GPU. However, sample generation is only a small fraction of the
overall rendering time, especially for complex scenes. For example,
for the chair model in Fig. 1, it is less than 2% of total runtime. Thus,
ART-Owen scrambling increases overall rendering time by less than
1%. For very simple scenes where sample generation consumes a
larger fraction of runtime or for non-rendering applications, it may
be more efficient to increase the sampling rate than to scramble.
We note that, given that scrambling requires just the few lines of
code in Algorithm 2, our scrambler may easily be selected on a
scene-by-scene or even dimension-by-dimension basis.

6.2 Inversion
While it is straightforward to generate independent samples in each
pixel, superior results are generally achieved using a global sampler
that generates points across the entire image plane. In this way, not
only is there a good distribution of points within each pixel, but
samples in adjacent pixels are also well-distributed with respect to
each other. In order to be used with parallelism, global samplers
must be invertible, which allows enumerating the samples within a
selected pixel. Although the invertibility of unscrambled Halton and
Sobol sequences was demonstrated by Gruenschloß et al. [2012],
to our knowledge, inversion of Owen scrambled sequences has not
been demonstrated previously. Therefore, for example, even though
PBRT supports a number of scrambling algorithms in its Sobol
sampler, it only uses unscrambled points for image plane sampling.

Our model is not only invertible, but inversion is efficient; the al-
gorithm to recover the original sample location given the scrambled
location and grammar and data tables is shown in Algorithm 3. Note
that the unscrambling process is almost identical to the scrambling
one. The scrambling is undone to the pixel level with Algorithm 3,
then inversion is completed as in Grünschloß et al. [2012]. Fig. 1
shows the benefit of this capability with an example where fine geo-
metric detail and structure in the first two dimensions of the Sobol
sequence lead to errors in the image. It is evident that error from
the fine detail in the chair’s seat is pushed to higher frequencies
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(a) Reference (b) Unscrambled (c) ART-Owen scrambled (d) Reference (e) Unscrambled (f) ART-Owen scrambled

Fig. 6. Renderings to demonstrate the potential improvements of integrating our ART-Owen scrambler with a Sobol sampler. Showing (left) area-light and
(right) depth-of-field sampling effects at two and four samples per pixel, respectively. The unscrambled Sobol points cause structured artifacts that are greatly
reduced with Owen scrambling.

Algorithm 3: C code implementation of unscrambling. It is
almost identical to the scrambling Algorithm 2.
inline	unsigned	unscrmbl(unsigned	xOut,	Prod	&prod,	unsigned	*data,	int	id)	{
				unsigned	xIn	=	xOut;
				for	(int	i	=	0;	i	<	BITS;	i++)	{
								xIn	^=		data[id]	>>	i;
								id	=	prod[id][(xIn	>>	((BITS	-	1)	-	i))	&	1];
				}
				return	xIn;
}

with Owen scrambling, giving improved blue noise characteristics
and an error that is visually closer to the reference.1
Another useful application of invertibility is adaptive sampling:

it is straightforward to produce as many samples as are required
in each pixel, potentially doing so incrementally until convergence
criteria are met. Fig. 7 shows a proof of concept: at each pixel, we
take either 2 or 64 image samples, with the higher sampling rate
selected based on geometric edges and discontinuities and the color
contrast of the albedo compared to neighboring pixels. An average
of 15.7 samples per pixel are taken with the adaptive sampler, giving
a result that is nearly the same as 64 samples at every pixel, yet with
4× fewer pixel samples.

6.3 Convergence
One of the advantages of Owen scrambling is superior asymptotic
rates of convergence with smooth functions. Fig. 8 shows a synthetic
example of integrating a smooth function, following the examples
of Christensen et al. [Christensen et al. 2018]. Independent uniform
samples have the highest error, with error decreasing by𝑂 (1/

√
𝑛), as

is standard with Monte Carlo integration. For this smooth function,
unscrambled Sobol points converge at the higher rate of 𝑂 (1/𝑛),
but ART Owen scrambled points have a remarkable 𝑂 (1/𝑛3/2) rate
of convergence, with dramatically lower error at power-of-two
sample counts.We expect similar benefits in rendering given smooth
integrands such as unoccluded light sources.

6.4 Complexity
The time complexity of our method is O(𝑚), the bit depth, which
may be considered constant for most applications, but we meant to
1For both Fig. 1 and 7, we applied splitting, tracing many secondary rays after each
primary hit. In this way, these comparisons highlight the image-plane sampling benefits
of scrambling with consistently high-quality estimates of indirect lighting.

Mask 2 spp 64 spp Adative spp

2 spp 64 spp Adaptive spp 2 spp 64 spp Adaptive spp

Fig. 7. An invertible scrambling allows adaptive sampling. The “mask” on
the left is a visualization of the per-pixel sampling rates used, where black
corresponds to 2 spp (samples per pixel) and white 64 spp. The scene on the
right is rendered at, from left to right, a fixed rate of 2 spp, a fixed rate of
64 spp, and adaptive sampling based on the shown mask, at an average of
15.7 spp. Crops demonstrate the effectiveness of adaptive sampling.

expose the bit depth as a degree of freedom to control the process.
Our method clearly stands out when it comes to the coding com-
plexity of the runtime part. The variation is large, however, in the
grammar-design part. For example, a random grammar is trivial to
implement, while the TM grammar is considerably more complex.
Finally, the space complexity is user-prescribed.

6.5 Spectral Analysis
The power spectra of sampling patterns give additional insight into
their performance. In particular, patterns with low energy at low
frequencies and uniform energy at higher frequencies are effective
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Fig. 8. Mean squared error when integrating the Gaussian function shown
in the inset with three different point sets. Low discrepancy Sobol points
have much lower error than independent uniform points that converge at
𝑂 (1/

√
𝑛) . Owen scrambling offers an asymptotically higher rate of conver-

gence,𝑂 (1/𝑛3/2) , than unscrambled Sobol points,𝑂 (1/𝑛) [Burley 2020].

at converting aliasing into high-frequency noise, which is pleas-
ing to the human visual system. We have generated power spectra
by averaging the periodograms of various sampling methods over
multiple realizations. As we can see in Fig. 9, the instance perfor-
mance of our method varies with the budget of the data bits, i.e.
the grammar size, which makes sense. In average, all our tested TM
grammars, even with only two symbols, converged to the reference
Owen-scrambling spectrum, indicating that our method performs
very well in sampling the universe. In contrast, we find persistent
residual frequency spikes in Burley’s scrambling, indicating a biased
sampling of all possible scrambling trees.

6.6 Versatility
Our method presents the user with many degrees of control to
tailor the model. For example, the model is scalable to any memory
budget. Notably, even with a single-symbol grammar, the model is
still able to yield. Namely, it provably reproduces XOR scrambling.
The processing can be trimmed to any bit depth to gain some speed
up; cf. [Matoušek 1998]. Finally, it can target any given scrambling
tree, as discussed in Section 5.2.

6.7 Optimization
Our framework readily suggests using a greedy descent algorithm to
optimize the scrambling data towards different targets. The general
approach is to start with a random setting, iterate through all the
data bits, flipping them one by one, and accepting the change if it
improves towards the target. A cycle through all the bits counts
as one iteration, and the algorithm stops when no more changes
are acceptable. We made a basic implementation of this downhill
idea, as listed in Algorithm 4, and obtained the result shown in
Fig. 10. We do not claim any optimality in our implementation,
and while the results are not exceptional, they still represent a
proof of concept on the optimizability. The point is that our model
narrows down the design space of Owen scrambling, making such a
search feasible. All previous optimization attempts we are aware of,
e.g., [Helmer2021], try an exhaustive scan in a small depth. There
may still be considerable room for improvement. For example, the

Algorithm 4: Optimizing an ART Owen Scrambling.
Input : (1) A production table representing an ART-Owen

scrambler.
(2) An initial data table.
(3) A quality assessment function.

Output :A data table optimizing the target set size towards
the prescribed quality measure.

1 repeat
2 Reset change counter;
3 foreach symbol do
4 for preset number of attempts do
5 randomly chose a new data vector;
6 evaluate the new scrambling;
7 if quality improves then
8 increment change counter;
9 else
10 restore preceding data vector;

11 until No changes accepted;

intuitive bit-by-bit adjustment failed, but we managed to get it to
work by adjusting the whole data entry at once. We also conceived
the multiple attempts idea experimentally. For the shown results
we use a thousand attempts.

Optimization targets vary widely and depend on the application
scenario. For example, for some applications, we may optimize a
sequence progressively so that all the leading power-of-two sets
are optimal, while other scenarios, e.g., Z-Sampler [Ahmed and
Wonka 2020], may ask to optimize equal-sized nets taken from
the same sequence. There are many more optimization scenarios
than we can enumerate here, but to give a non-trivial example, we
considered optimizing under the two-symbol TM grammar in Eq. (2),
which is extremely efficient in both memory and speed. Indeed, the
grammar may be hard-coded as a single XOR operation. Rather than
using the iterative model outlined above, we could implement an
exhaustive search over all the 256-point nets obtained by scrambling
the first points of the Sobol sequence. With this 8-bit resolution,
each scrambling data entry takes one byte, hence the whole set of
scrambling data can be stored compactly as a 32-bit word. With
the help of a GPU, we scanned the whole 4G range of choices for
scrambling codes that maximize the minimum spacing of points
[Grünschloß et al. 2008; Grünschloß and Keller 2009], also known
as conflict radius, and for codes that minimize the blue-noise energy
[Ahmed and Wonka 2021]. We obtained even better qualities by
combining the two, as demonstrated in Fig. 11.

7 CONCLUSION
In this paper, we presented a simple and elegant solution to the long-
standing problem of efficiently implementing Owen scrambling. Our
algorithm readily integrates in rendering engines with negligible
effort, and provides many degrees of freedom for users to control
the distribution of points.
Because we have transformed the scrambling problem into an-

other, possibly more interesting problem of finding a good grammar,

ACM Trans. Graph., Vol. 42, No. 6, Article 258. Publication date: December 2023.



258:10 • Abdalla G. M. Ahmed, Matt Pharr, and Peter Wonka

(a) Sobol, 0 bits (b) Netshuffle, 13312 bits (c) Owen, 12798 bits (d) 8-bit Owen, 510 bits (e) XOR, 64 bits (f) Burley, 192 bits (g) ART-Owen, 128 bits (h) ART-Owen, 256 bits (i) ART-Owen, 1024 bits

Fig. 9. Various scramblings of the first 256 points of the 2D Sobol sequence, showing along the rows a typical distribution of the points, a typical periodogram of
a single set, an average periodogram over 100 realizations, an average periodogram over 10000 realizations, and a zoneplate plot of 256×256 points; comparing:
(a) unscrambled Sobol sequence, (b) Netshuffle [Ahmed and Wonka 2021], (c) a proper Owen scrambling, using Helmer’s implementation [2021], (d) Owen
scrambling to only 8-bit depth (cf. [Matoušek 1998]), (e) XOR scrambling [Kollig and Keller 2002]: a minimal variant of Owen scrambling that uses a single
word (i.e. bit-vector) per axis, (f) Burley’s [2020] hash-based Owen scrambling, and our method, using (g) two, (h) four, and (i) 16 symbols. Numbers indicate
the number of randomization data bits used. Netshuffle and Helemer’s implementation of Owen scrambling work only with a prescribed size of nets, and
are shown here for reference to the quality, while the remaining methods enable random access to the samples. Note that XOR scrambling offers almost
no spectral improvement, while Burley’s technique seems to bear its own frequency structure that creeps into the generated nets, imposing a persistent
distortion onto the frequency spectrum. Our method is free of these distortions and offers a smooth trade-off between quality and memory footprint. The
improvement over Burley’s and XOR is evident in the absence of spikes from the average spectra and the reduced structures in the zoneplate plots. The
truncated scrambling in (d) is shown to demonstrate the influence of the trailing bits. It is not noticeable for a number of points proportional to the scrambling
depth, but becomes evident for a larger number of points, as may be seen in the zoneplate plot.

we believe that our work will lead to further research and investi-
gation. Well-specified, intriguing, and challenging, we expect this
problem to be quite appealing to researchers of all career stages, and
we appeal to the community to develop the method even further.
For example, a tournament over graduate students to suggest the
best grammars and demonstrate them may return better solutions
than what we, the authors, can do.
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A CACHING THE PERMUTATIONS
Noting the implementation problem of Owen scrambling discussed
in this paper, Matoušek [1998] early proposed a “trick” to trade
speed for memory by caching the permutation at the top of the tree.
The key insight is that the volume 2𝑚 of data is relatively small
for the few leading bits, and the underlying assumption is that the
required number of points is not large.
Following that suggestion, it is tempting to stop the scrambling

at a small depth. While there are many feasible applications of this
idea, it falls short in terms of scalability. To demonstrate this, we
discuss two implementation choices of caching 8 bits. The fastest
implementation is to precompute and tabulate the scrambled bytes
themselves. This model immediately loses invertability. But even if
that is not needed, this model does not scale well with dimension,
and the 256-byte table starts to become problematic. Alternatively,
we may consider storing the data bits. The O(𝑚) time complexity is
similar to our model, though slightly faster. The model is also readily
invertable. It fails, however, to scale with depth this time. Indeed, at
the time Matoušek published his paper there might have not been
practical applications imaginable that required scrambling deep
down beyond 8 or 12 bits. Grünschloß et al. [2012], however, later
introduced the concept of global samplers,where the whole image
plane is treated as a 2D projection of a unit hypercube, hence the
proposed 8-bit depth, for example, is far from reaching the subpixel
samples. This is where the advantage of our model becomes evident,
since we reuse the stored data bits to recursively scramble to any
depth. Finally, we note that the concept is orthogonal to our model,
and may well be combined with it. For example, an interesting
combination would be to reduce our data storage to 8 bits rather
than 32.
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